# **Test Documentation**

Release 1.1a7.dev57+g7e46d87

Kostas

Nov 10, 2023

# CONTENTS

| 1 | Elect | ricity fo      | or all                                          | 3  |
|---|-------|----------------|-------------------------------------------------|----|
| 2 | Cont  | ents           |                                                 | 5  |
|   | 2.1   | Introdu        | ction to OnSSET                                 | 5  |
|   |       | 2.1.1          | Universal access to electricity                 | 5  |
|   |       | 2.1.2          | What is OnSSET?                                 | 5  |
|   |       | 2.1.3          | Scope and Objective                             | 6  |
|   | 2.2   | The Or         | SSET Model                                      | 6  |
|   |       | 2.2.1          | Electricity demand                              | 6  |
|   |       | 2.2.2          | Electricity supply                              | 8  |
|   |       | 2.2.3          | Methodology Overview                            | 14 |
|   | 2.3   | Softwa         | re installation                                 | 15 |
|   |       | 2.3.1          | Requirements                                    | 15 |
|   |       | 2.3.2          | Software installation and setup                 | 16 |
|   |       | 2.3.3          | Additional Info                                 | 17 |
|   | 2.4   | GIS da         | ta acquisition                                  | 17 |
|   |       | 2.4.1          | Geographic Information Systems                  | 17 |
|   |       | 2.4.2          | GIS data sources                                | 18 |
|   |       | 2.4.3          | GIS data in OnSSET                              | 20 |
|   | 2.5   | ta preparation | 28                                              |    |
|   |       | 2.5.1          | Step 1. Proper data types and coordinate system | 28 |
|   |       | 2.5.2          | Step 2. Layer projection                        | 29 |
|   |       | 2.5.3          | Step 3. Generate population clusters            | 29 |
|   |       | 2.5.4          | Step 4. Generate the OnSSET input file          | 30 |
|   |       | 2.5.5          | GIS country file                                | 30 |
|   | 2.6   | Techno         | economic and demographic parameter              | 31 |
|   |       | 2.6.1          | Input model parameters                          | 31 |
|   |       | 2.6.2          | Discount rate                                   | 32 |
|   |       | 2.6.3          | Off-grid technology costs                       | 33 |
|   |       | 2.6.4          | Diesel pump price                               | 35 |
|   |       | 2.6.5          | Household size                                  | 35 |
|   | 2.7   | Runnin         | g the analysis                                  | 35 |
|   |       | 2.7.1          | Setting up PyCharm - Afghanistan Demo           | 35 |
|   |       | 2.7.2          | Installing/updating modules and packages        | 38 |
|   |       | 2.7.3          | Running the code                                | 39 |
|   | 2.8   | Analys         | is and visualizations                           | 41 |
|   |       | 2.8.1          | Output parameters                               | 41 |
|   |       | 2.8.2          | Summaries output                                | 42 |
|   |       | 2.8.3          | Maps output                                     | 43 |
|   | 2.9   | Online         | interfaces & Applications                       | 45 |

|    |                         | 2.9.1    | United Nations app | . 45 |  |  |  |  |  |
|----|-------------------------|----------|--------------------|------|--|--|--|--|--|
|    |                         | 2.9.2    | World Bank app     | . 46 |  |  |  |  |  |
|    | 2.10                    | Referen  | nces               | . 47 |  |  |  |  |  |
|    |                         | 2.10.1   | Publications       | . 47 |  |  |  |  |  |
|    |                         | 2.10.2   | Contribution       | . 48 |  |  |  |  |  |
|    |                         | 2.10.3   | Partners           | . 48 |  |  |  |  |  |
|    | 2.11                    | Contact  |                    | . 49 |  |  |  |  |  |
|    |                         | 2.11.1   | Feedback           | . 50 |  |  |  |  |  |
|    |                         | 2.11.2   | Funding            | . 50 |  |  |  |  |  |
|    |                         | 2.11.3   | Administration     | . 50 |  |  |  |  |  |
|    | 2.12                    | FAQ.     |                    | . 50 |  |  |  |  |  |
|    | 2.13                    | License  |                    | . 51 |  |  |  |  |  |
|    | 2.14                    | onsset . |                    | . 51 |  |  |  |  |  |
|    |                         | 2.14.1   | onsset package     | . 51 |  |  |  |  |  |
| 3  | 3 Indices and tables 59 |          |                    |      |  |  |  |  |  |
| Ру | Python Module Index     |          |                    |      |  |  |  |  |  |
| In | dex                     |          |                    | 63   |  |  |  |  |  |

# Open Source Spatial Electrification Tool

Fig. 1: KTH dES - http://www.onsset.org

## CHAPTER

ONE

# **ELECTRICITY FOR ALL**

In September 2015, the United Nations General Assembly adopted Agenda 2030, which comprises a set of 17 Sustainable Development Goals (SDGs) defined by 169 targets. "Ensuring access to affordable, reliable, sustainable and modern energy for all by 2030" is the seventh goal (SDG7). According to the Tracking SDG 7: The Energy Progress Report of 2020 approximately 789 million people lacked access to electricity in 2018, and many more rely on poor quality electricity services. The majority of those without access (85%) reside in rural areas. Access to electricity services is a prerequisite for sustainable development and a powerful factor in poverty alleviation and well-being.



## CHAPTER

TWO

# CONTENTS

# 2.1 Introduction to OnSSET

## 2.1.1 Universal access to electricity

The 2030 Agenda for Sustainable Development has set the goal of universal access to electricity by 2030 (SDG7). The challenge is significant. It involves reaching population with limited income, often living in sparsely populated areas, mostly in developing and least developed countries. The choice of which technology to use for increasing electricity access, depends on a number of parameters, from social to techno-economic including e.g. target level of energy access, local population density, distance to the national grid and local resource availability. These parameters are spatial in nature, making geospatial information very useful for their evaluation on both regional, national and sub-national scale.



## 2.1.2 What is OnSSET?

Over the past few years, the division of Energy Systems at KTH (formerly division of Energy Systems Analysis) has been embracing the advancements in the geospatial field, by developing together with partners an open source, geospatial electrification toolkit – the Open Source Spatial Electrification Tool (OnSSET). OnSSET is a GIS based tool developed to identify the least-cost electrification option(s) between seven alternative configurations:

- Grid connection/extension
- Mini grid systems (Solar PV, Wind Turbines, Diesel gensets, Small scale hydropower)
- Stand-alone systems (Solar PV, Diesel gensets)

The results indicate the technology mix, capacity and investment requirements for achieving universal access in the modelled country, under a certain time period (usually until 2030). The findings can be presented in various formats such as interactive maps, graphs, images, tables etc.

## 2.1.3 Scope and Objective

OnSSET output, can be used to support policy development for electrification by taking into consideration specific guidelines and targets for each country. This, could help answer questions like:

- What would it cost to provide universal electricity access in the country? How does this cost change based on the targeted consumption level per capita?
- In case of limited resources, which customers/areas shall be prioritized? What key consumers should electrification activities focus on?
- What part of population lives within 50 km from the existing grid infrastructure and what part in remote (lastmile) communities?
- What is the most cost effective way to electrify populations in the last mile, what technologies and costs would that imply?
- How do diesel generators compare with off grid renewables (solar PV, wind, hydro) in terms of overall economic performance? What are the implications of an imminent carbon pricing scheme?
- What is the importance/impact of diesel price in the generation mix for electrification?
- How does fuel cost for diesel compares with high upfront cost of renewables in terms of subsidy schemes (continuous vs one-time subsidy)?

To the current state, OnSSET has supported electrification efforts in many countries around the globe including Afghanistan, Nigeria, Ethiopia, Kenya, India, Tanzania, Madagascar and Benin as part of joint collaboration with the World Bank, the United Nations and SNV. These organizations, have warmly embraced the tool in their fight against energy poverty. In addition, OnSSET has featured in several peer reviewd publications including the World Energy Outlook in 2014, 2015, 2017 and 2019.

# 2.2 The OnSSET Model

OnSSET is a bottom-up medium to long term optimization model. Its principle is simple. Using population settlements together with different geospatial characteristics and socio- and tecno-economic data the tool tries to identify the least-cost supply option in order to reach universial electrification in each location.

The least-cost technology mix and investments required to fully electrify a country within a defined timeframe (e.g. 2030) can vary significantly depending on demand and supply characteristics, such as:

- 1) The level of electricity access to be achieved in a country (kWh/person/year).
- 2) The current status and plans of the national electricity grid along with its associated costs.
- 3) Local energy resource availability and off-grid power systems costs.

The following paragraphs describe in brief how an electrification analysis with OnSSET works.

## 2.2.1 Electricity demand

The goal of OnSSET is clear, to identify the mix of technologies that will help to fully electrify the population of a country within a certain timeframe. Currently, OnSSET only accounts for residential electricity demand.

#### Geo-location of population and current electrification status

Using population density maps, OnSSET can identify where population is located whithin the study area. Depending on the number of people living in a settlement, OnSSET categorizes a settlement as either urban or rural. Other geospatial information such as the distance between a settlement and its closest electricity grid, its distance from closest transformer, population density and its brightness index at night (from satellite imagery), helps OnSSET identify the current electrification status per settlement. Each settlement is characterized as electrified or un-electrified.



#### **Residential Electricity Demand**

Once the electrified and un-electrified population has been spatially identified, OnSSET uses population growth rates per type of settlement (urban/rural) to estimate the projected population at the end year of the analysis (e.g. 2030). This is one of the two parameters we need to know to quantify and locate the future electricity demand. The second parameter is the target level of electricity; OnSSET adopts the consumption levels suggested by the Global Tracking Framework (2015).



Consumption levels start from 8 kWh/person/year, enough to support minor daily activities (few hours of lighting, phone charging, radio etc.) and reach up to 598 kWh/person/year, supporting the use of heavier or continuous appliances in a household like refrigerator, washing machine, oven etc. These values can easily be changed in the OnSSET model in order to better fit the study area of your choice. The combination of projected population and targeted consumption level, indicates the electricity demand for residential purposes per location.

Note, that OnSSET provides the option of determining the demand either through a top-down approach or a bottom-up one. In the top-down approach the user selects which tier the urban and rural settlements reach respectively and the demand in each settlement is determined as:

## Electricity Demand = Population in 2030 X Selected Access Tier

In the bottom-up approach the user can use a combination of different GIS-datasets (e.g. GDP and poverty) in order to generate a custom demand estimate for each settlement. This approach requires the user to generate a demand layer and gives more dissagregated measure of deamnd than the urban-rural division in the top-down approach.

## 2.2.2 Electricity supply

OnSSET uses GIS to seize location specific information of power infrastructure. It also relies on GIS data in order to grasp the spatial and temporal fluctuation of energy resources. All these data, are later translated into techno-economic inputs and are very useful in assessing the performance of various technologies.

#### **Energy resources assessment**

#### Wind energy potential and capacity factors

Wind speed data extracted into a GIS environment are used to calculate wind turbine capacity factors per location. The latter is defined as the ratio of the yearly expected wind energy production to the energy production if the wind turbine were to operate at its rated power throughout the year. The capacity factor reflects the potential wind power at a given site and it can be used for comparing different sites before the installation of wind power plants. Additional documentation on wind power assessment is available here.



## Solar energy potential

GIS data for Global Horizontal Irradiation (GHI - kWh/m^2/time) are used to indicate the available solar energy that Photovoltaic (PV) systems can utilize per location. Documentation on solar power assessment is available here.



#### Hydropower potential

A number of GIS datasets (runoff, accumulation, elevation, river network) have been utilized in a novel methodology developed by KTH dES in order to spatially identify potential sites for small scale hydropower deployment. Documentation on hydropower assessment together with a GIS based assessment tool is available here.



#### **Transportation Cost for Diesel**

Diesel is an important energy carrier, especially in remote areas of many developing countries and is therefore included in the OnSSET analysis. Transportation of diesel incurs costs, which may lead to high costs of electricity for isolated and low populated communities. OnSSET uses GIS datasets that indicate travel time and distance from main urban hubs, in order to calculate and assign transportation costs for diesel in each location. These costs are then included as fuel costs in the calculation of LCoE for diesel gensets. Documentation on diesel cost assessment is available here.



## **Electrification options**

Over the last few decades, access to electricity in many parts of the world has been primarily achieved through the extension of the national electricity grid. Levereging on economies of scale, centralized grids offer electricity at low costs. Power grid expansion is however a capital intensive and lenthy process. In contrary, decentralized power system configurations i.e. mini-grids or stand-alone systems may be a better fit for electrification of remote, sparsely populated areas. Technological advances over the past decades along with innovative business models, have made such systems rather cost competitive. In addition, if based on local renewable sources they increase supply reliability while decreasing reliance on imported fuels.

OnSSET estimates and compares the performance of seven technology configurations that fall within three main categoroes: grid-extension, mini-grids and stand-alone systems.

#### **Grid extension**

Central grids can offer low generating costs. However, grid extension might not be economically or socially feasible if the purpose is to meet a relatively small electricity demand or reaching remotely located areas.



## Mini-grids - Wind Turbines, Solar PVs, Mini/Small Hydro, Diesel generators

Mini-grids usually provide electricity from small power plants with generating capacity of a few MW. They tap locally available energy resources such as solar, hydro, wind, or can use commonly available fuels such as diesel. Overall, they can provide affordable electricity to rural and remote areas with low to medium electricity consumption habits. Costwise, if based on renewable sources, they usually have moderate to high upfront investment costs but small operational monetary costs and no fuel costs. On the other hand, diesel generator sets (gensets) are a mature technology with low upfront investment cost but subjected to operational costs depending on diesel pump price and transport costs fluctuations.



#### Stand-alone systems (SA) - Solar PVs, Diesel generators

Like mini-grids, these systems are usually based on local energy resources but the difference is that these can produce only few kWh per day, suitable to cover the electricity demand of a single household or a small business, but no more. Stand-alone systems do not require a T&D network nor construction investments. The capital cost of these systems is not high and depends mainly on size. Batteries, allowing for electricity when dark, may increase the upfront cost for PV systems.



## 2.2.3 Methodology Overview



#### Brief description of the electrification algorithm

The electrification algorithm procedure is based on two separate, yet complementary processes. On the one hand, a GIS analysis is required to obtain a settlement table referencing each settlement's position –i.e., its x and y coordinates – and information related to demand, resource availability, infrastructure and economic activities. Night-time light datasets are used in combination with population density and electricity related infrastructure (transformers, transmission lines and distribution lines) in order to identify the presently electrified population. The initial electrification status is listed as either 1 (electrified) or 0 (non-electrified).

The algorithm calculates the cost of generating electricity at each cell for different electrification configurations based on the local specificities and cost related parameters. Depending on the electricity demand, transmission and distribution network requirements, energy resource availability etc. the LCoE for each of the seven technology configurations is calculated in each settlement. The LCoE of a specific technology configuration represents the final cost of electricity required for the overall system to break even over the project lifetime.

**Note:** The LCoE calculations for the mini-grid and standalone electrification options reflect the total system costs while the LCoE for the grid option is the sum of the average LCoE of the national grid plus the marginal LCoE of transmitting and distributing electricity from the national grid to the demand location.

Once the LCoEs for all the off-grid technology configurations have been calculated the grid extension algorithm is executed. For each cell electrified by the national grid the algorithm iterates through all non-electrified cells to test if the conditions for their connection to the electrified settlement are fulfilled. These conditions include: a) lower cost of generating, transmitting and distributing electricity as compared to the off-grid technologies and b) not causing the total additional MV grid length to exceed 50 km if it is connected.

If these conditions are fulfilled, the settlement status is set to electrified (by the national grid). At the same time, the algorithm stores the length of the additional MV lines that have been built thus far by the model to connect this new settlement. This is required to ensure all newly electrified cells comply with the 50 km limit for the length of MV lines. Further, this is also used to consider cost increases for each additional MV extension, due to the requirement to strengthen the previously built grid line. This process is repeated with the newly electrified cells until no additional cells are being electrified, and thus until all settlements to which the grid can be economically extended are reached. Settlements that are not connected to the grid will get access to electricity through mini grid or stand-alone systems. This decision is based on a cost comparison process where the off-grid technology which can meet the electricity demand at the lowest LCoE selected for each cell.

#### Penalty cost assignment to electricity grid expansion processess

The expansion of the transmission network to areas lacking access is a capital intensive process. The investment costs are influenced by several factors such as the capacity and the length of the lines as well as by the topology of the subjected area. In this analysis, a number of geospatial factors that affect the investment costs of the transmission network are identified and considered in order to assign an incremental capital cost in locations that indicate specific topological features. Particularly, investment cost is influenced by elevation, the road network, land cover type, slope gradient and distance from substations.

# 2.3 Software installation

## 2.3.1 Requirements

## QGIS

OnSSET is a spatial electrification tool and as such highly relies on the usage of Geographic Information Systems (GIS). A GIS environment is therefore necessary for two main reasons:

- Extract trivial characteristics for the electrification analysis from GIS layers and combine them all together in a format easy to read in python (a .csv file with all the attributes per population point).
- Visualize the final results in maps.

Historically OnSSET has relied on ArcGIS, but recently the process has been moved to open source GIS environments. OnSSET in it's current form relies on QGIS (together with in QGIS included tools from SAGA, GDAL and GRASS)

**Note:** In order to assure that the QGIS section of OnSSET functions correctly make sure to donwload the lastest long-term release of QGIS (version 3.10 as of the 7th of August 2020)

Download QGIS for free from the official QGIS website.

#### Python - Anaconda package

OnSSET is written in python, an open source programming language used widely in many applications. Python is a necessary requirement for the OnSSET tool to work. Programming in python usually relies on the usage of pre-defined functions that can be found in the so called modules. In order to work with OnSSET, certain modules need to be installed/updated. The easiest way to do so is by installing Anaconda, a package that contains a wide range of Python packages in one bundle. Anaconda includes all the Python packages required to run OnSSET successfully. Python itself can be downloaded and installed for free from the official Python website.

#### **Python Interfaces - Integrated Development Environment (IDEs)**

#### **PyCharm**

Integrated Development Environments are used in order to ease the programming process when multiple or long scripts are required. There are plenty of IDEs developed for Python, KTH dESA has been using PyCharm as the standard IDE to run OnSSET.

#### Jupyter notebook (via Anaconda)

Jupyter notebook is a console-based, interactive computing approach providing a web-based application suitable for capturing the whole computation process: developing, documenting, and executing code, as well as communicating the results. Jupyter notebook is used for the online OnSSET interface, recommended for small analyses and exploring code and results.

#### GitHub

GitHub is a web-based Git repository hosting service. It provides access control and several collaboration features such as bug tracking, feature requests, task management, and wikis for every project. OnSSET is an open source tool therefore the code behind it is open and freely accessible to any user. The code behind the OnSSET tool is called "PyOnsset" and is available in KTH dESA's Github space. A GitHub account will allow you to propose changes, modifications and upgrades to the existing code. Access the repository on Github.

## 2.3.2 Software installation and setup

- 1. Download \*\*Anaconda\*\* here and install.
- Please make sure that you download the version that is compatible with your operating system (Windows/MacOS/Linux In case you run Windows open the *Windows Control Panel*, go to *System and Security System* and check e.g. Windows 32-bit or 64-bit).
- Following the installation process make sure that you click on the option "Add Python X.X to PATH". Also by choosing to customize the installation, you can specify the directory of your preference (suggest something convenient e.g. C:/Python35/..).
- After the installation you can use the Anaconda command line (search for "Anaconda Prompt") to run python. It should work by simply writing "python" and pressing enter, since the path has already been included in the

system variables. In case this doesn't work, you can either navigate to the specified directory and write "python" there, or add the directory to the PATH by editing the environment variables.

2. Download PyCharm here and install.

Please make sure that you download the version that is compatible with your operating system. Select the "Community", open-source version.

3. Download the code from **GitHub** here.

## 2.3.3 Additional Info

- Basic navigating commands for DOS (cmd).
- Modules and packages installation documentation from python.org.

# 2.4 GIS data acquisition

## 2.4.1 Geographic Information Systems

A Geographic Information System (GIS) is an integrated set of hardware and software tools, designed to capture, store, manipulate, analyse, manage, and digitally present spatial (or geographic) data and related attribute information. GIS can relate information from different sources, using two key index variables space (or location) and time. Common GIS data types (models) include:

Spatial Data: Describe the absolute and relative location of geographic features.

- Vectors
  - Arcs (Polylines): Line segments forming individual linear features
  - Polygons: Areas enclosed by arcs
  - Points: Single coordinate pairs



Rasters

- Grid-Cells: single column/row positions
- Cell size: Resolution or else the accuracy of the data



Attribute data: Describe characteristics of the spatial features. These characteristics can be quantitative and/or qualitative in nature. Attribute data is often referred to as tabular data.

The selection of a particular data model, vector or raster, is dependent on the source and type of data, as well as the intended use of the data. Certain analytical procedures require raster data while others are better suited to vector data.

## 2.4.2 GIS data sources

#### EnergyData.info

Every day governments, private sector and development aid organizations collect data to inform, prepare and implement policies and investments. Yet, while elaborate reports are made public, the data underpinning the analysis remain locked in a computer out of reach. Because of this, the tremendous value they could bring to public and private actors in data-poor environments is too often lost.

Energydata.info is an open data platform launched recently by The World Bank Group and several partners, trying to change energy data paucity. It has been developed as a public good available to governments, development organizations, non-governmental organizations, academia, civil society and individuals to share data and analytics that can help achieving universal access to modern energy services. The database considers a variety of open, geospatial datasets of various context and granularity. **KTH Division of Energy Systems (KTH-dES), formerly known as KTH division of Energy Systems Analysis (KTH-dESA),** contributes on a continuous basis by providing relevant datasets for electrification planning.



## Indicative open libraries of GIS data

Over the past few years, KTH dES has been actively involved in the field of geospatial analysis. The following table presents a list of libraries and directories that provide access to open GIS data.

| Source          | Туре      | Link                                                                  |
|-----------------|-----------|-----------------------------------------------------------------------|
| Penn            | World per | http://guides.library.upenn.edu/content.php?pid=324392&sid=2655131    |
|                 | region    |                                                                       |
| MIT             | World per | http://libguides.mit.edu/c.php?g=176295&p=1161383                     |
|                 | region    |                                                                       |
| EDEnextdata     | World per | https://www.edenextdata.com/?q=content/global-gis-datasets-links-0#   |
|                 | region    | Population%20Infrastructure%20Topography%20and%20Administration%      |
|                 |           | 20Data                                                                |
| Stanford        | World per | https://library.stanford.edu/research/stanford-geospatial-center/data |
|                 | region    |                                                                       |
| GIS Lounge      | Finding   | http://www.gislounge.com/data-and-gis-resources/                      |
|                 | GIS data  |                                                                       |
| dragons8mycat   | Different | https://dragons8mycat.wordpress.com/gis-data-sources/                 |
|                 | countries |                                                                       |
| rtwilson        | Different | http://freegisdata.rtwilson.com/                                      |
|                 | types     |                                                                       |
| Planet OSM      | Different | http://planet.osm.org/                                                |
|                 | types     |                                                                       |
| Berkeley        | Different | http://gif.berkeley.edu/resources/data_subject.html                   |
|                 | types     |                                                                       |
| Kings College   | Different | http://www.policysupport.org/waterworld                               |
|                 | types     |                                                                       |
| CSRC            | Different | http://rslab.sr.unh.edu/gdatalinks.html                               |
|                 | types     |                                                                       |
| Data Discovery  | Different | http://ddc.unh.edu/                                                   |
| Center          | types     |                                                                       |
| Spatial Hydrol- | Different | http://www.spatialhydrology.com/datawarehouse.html                    |
| ogy             | types     |                                                                       |
| Africa Informa- | Different | http://dataportal.opendataforafrica.org/                              |
| tion Highway    | types     |                                                                       |
| The Human-      | Different | https://data.humdata.org/                                             |
| itarian Data    | types     |                                                                       |
| Exchange        |           |                                                                       |

#### **Country specific databases**

With geospatial analysis gaining momentum in many research areas, many countries have set up their own geo-databases in an effort to facilitate interdisciplinary research activities under a geospatial context. Here are few examples:

| Country    | Source                                                                             |
|------------|------------------------------------------------------------------------------------|
| Bolivia    | http://geo.gob.bo/#viewer                                                          |
| Brazil     | http://www.ibge.gov.br/english/geociencias/default_prod.shtm#REC_NAT               |
| East Timor | http://goleaddog.com/gis-map/asia/timor-leste/                                     |
| Malawi     | http://www.masdap.mw/                                                              |
| Namibia    | http://www.uni-koeln.de/sfb389/e/e1/download/atlas_namibia/main_namibia_atlas.html |
| Nepal      | http://geoportal.icimod.org/                                                       |
| Russia     | http://gis-lab.info/qa/vmap0-eng.html                                              |

## 2.4.3 GIS data in OnSSET

OnSSET is a GIS-based tool and therefore requires data in a geographical format. In the context of the power sector, necessary data includes those on current and planned infrastructure (electric grid networks, road networks, power plants, industry, public facilities), population characteristics (distribution, location), economic and industrial activity, and local renewable energy flows. The table below lists all layers required for an OnSSET analysis.

| #    | Dataset    | Туре    | Description                                                                                      |
|------|------------|---------|--------------------------------------------------------------------------------------------------|
| 1    | Popu-      | Raster  | Spatial identification and quantification of the current (base year) population. This dataset    |
|      | lation     |         | sets the basis of the ONSSET analysis as it is directly connected with the electricity demand    |
|      | density    |         | and the assignment of energy access goals.                                                       |
|      | & distri-  |         |                                                                                                  |
|      | bution     |         |                                                                                                  |
| 2    | Admin-     | Polv-   | Delineates the boundaries of the analysis.                                                       |
| _    | istrative  | gon     |                                                                                                  |
|      | bound-     | 8011    |                                                                                                  |
|      | aries      |         |                                                                                                  |
| 3    | Existing   | Line    | Used to identify and spatially calibrate the currently electrified/non-electrified population    |
| 5    | HV         | shape   | This is layer is optional                                                                        |
|      | network    | filo    |                                                                                                  |
|      | (On        | me      |                                                                                                  |
|      | (Op-       |         |                                                                                                  |
| 4    | Lional)    | Daint   | Comment Substation inforestructure used to identify and enoticity calibrate the commentar        |
| 4    | Power      | Point   | Current Substation infrastructure used to identify and spatially calibrate the currently         |
|      | Substa-    | snape-  | electrified/non-electrified population. It is also used in order to specify grid extension       |
|      | tions      | піе     | suitability. This is layer is optional.                                                          |
|      | (Op-       |         |                                                                                                  |
|      | tional)    |         |                                                                                                  |
| 5    | Koads      | Line    | Current Road intrastructure used to, identify and spatially calibrate the currently              |
|      | (Op-       | shape-  | electrified/non-electrified population. It is also used in order to specify grid extension       |
|      | tional)    | file    | suitability. This is layer is optional.                                                          |
| 6    | Planned    | Point   | Represents the future plans for the extension of the national electric grid. It also includes    |
|      | HV         | shape-  | extension to current/future substations, power plants, mines and queries. This is layer is       |
|      | network    | file    | optional.                                                                                        |
|      | (Op-       |         |                                                                                                  |
|      | tional)    |         |                                                                                                  |
| 7    | Existing   | Line    | Used to identify and spatially calibrate the currently electrified/non-electrified population.   |
|      | MV         | shape-  | This is layer is optional.                                                                       |
|      | network    | file    |                                                                                                  |
|      | (Op-       |         |                                                                                                  |
|      | tional)    |         |                                                                                                  |
| 8    | Planned    | Point   | Represents the future plans for the extension of the national electric grid. This is layer is    |
|      | MV         | shape-  | optional.                                                                                        |
|      | network    | file    |                                                                                                  |
|      | (Op-       |         |                                                                                                  |
|      | tional)    |         |                                                                                                  |
| 9    | Night-     | Raster  | Dataset used to, identify and spatially calibrate the currently electrified/non-electrified pop- |
|      | time       |         | ulation.                                                                                         |
|      | lights     |         |                                                                                                  |
| 10   | GHI        | Raster  | Provide information about the Global Horizontal Irradiation (kWh/m2/year) over an area.          |
|      |            |         | This is later used to identify the availability/suitability of Photovoltaic systems.             |
| 11   | Wind       | Raster  | Provide information about the wind velocity (m/sec) over an area. This is later used to          |
|      | speed      |         | identify the availability/suitability of wind power (using Capacity factors).                    |
| 12   | Hydro      | Point   | Points showing potential mini/small hydropower potential. Dataset developed by KTH               |
|      | power      | shape-  | dESA including environmental, social and topological restrictions and provides power             |
|      | potential  | file    | availability in each identified point. Other sources can be used but should also provide         |
|      | (Ор-       |         | such information to reassure the proper model function. This is layer is optional.               |
|      | tional)    |         |                                                                                                  |
| 13   | Travel     | Raster  | Visualizes spatially the travel time required to reach from any individual cell to the closest   |
|      | time       |         | town with population more than 50,000 people.                                                    |
| 14   | Eleva-     | Raster  | Filled DEM maps are use in a number of processes in the analysis (Energy potentials,             |
|      | tion Map   |         | restriction zones, grid extension suitability map etc.).                                         |
| 15   | Land       | Raster  | Land cover maps are use in a number of processes in the analysis (Energy potentials, re-         |
| 2.4. | Gis data a | cquisit | Striction zones, grid extension suitability map etc.).                                           |
| 16   | Service    | Point   | Current Transformer infrastructure used to identify and spatially calibrate the currently        |
|      | trans-     | shape-  | electrified/non-electrified population. This is layer is optional.                               |
|      | formers    | file    | ** * *                                                                                           |

Note:

- Before a model can be built, one must acquire the layers of data outlined above.
- You are recommended to use all the layers listed in the table above, but some of the are optional and can be omited (see table above)

More often than not, each layer must be acquired on its own. The final outcome is a .csv-file conveying all the information necessary to initiate an OnSSET electrification analysis.

#### **GIS basic datasets**

## Administrative boundaries

| Cov-     | Туре     | Resolution                                | Year | Sour | celink                                |
|----------|----------|-------------------------------------------|------|------|---------------------------------------|
| erage    |          |                                           |      |      |                                       |
| World    | shape-   | Counties, provinces, departments, bibhag, | 2011 | GAD  | Mhttps://gadm.org/                    |
|          | file     | bundeslander, daerah istimewa, fivondro-  |      |      |                                       |
|          |          | nana,,krong, landsvæðun, opština, sous-   |      |      |                                       |
|          |          | préfectures, counties & thana             |      |      |                                       |
| World,(& | k shape- | Countries                                 | 2011 | DIVA | -http://www.diva-gis.org/Data         |
| per      | file     |                                           |      | GIS  |                                       |
| coun-    |          |                                           |      |      |                                       |
| try)     |          |                                           |      |      |                                       |
| Eu-      | geo-     | Countries, provinces                      | 2013 | Eu-  | http://ec.europa.eu/                  |
| rope     | database | /shapefile                                |      | ro-  | eurostat/web/gisco/                   |
|          |          |                                           |      | stat | geodata/reference-data/               |
|          |          |                                           |      |      | administrative-units-statistical-unit |

## Population data

| Coverage            | Туре    | Resolu-    | Year     | Source        | Link                                 |
|---------------------|---------|------------|----------|---------------|--------------------------------------|
|                     |         | tion       |          |               |                                      |
| World               | Various | 1 arc-     | (depend- | HDX           | https://data.humdata.org/            |
|                     |         | second     | ing on   |               | organization/facebook                |
|                     |         |            | country) |               |                                      |
| World               | raster  | 250 meter  | 1975,    | Global        | https://ghsl.jrc.ec.europa.eu/       |
|                     |         | and 1 km   | 1990,    | Human Set-    |                                      |
|                     |         |            | 2000,    | tlement Layer |                                      |
|                     |         |            | 2015     |               |                                      |
| Africa, Asia, Amer- | Raster  | 100 m      | (depend- | Worldpop      | https://www.worldpop.org/geodata/    |
| ica                 |         | grid cells | ing on   |               | listing?id=29                        |
|                     |         |            | country) |               |                                      |
| World               | grid    | 2.5 arc-   | 90/95/00 | SEDAC         | http://sedac.ciesin.                 |
|                     |         | minute     |          |               | columbia.edu/data/set/               |
|                     |         | grid cells |          |               | gpw-v3-population-density/           |
|                     |         |            |          |               | data-download                        |
| World               | shape-  | 2.5 arc-   | 2000     | UNEP          | http://geodata.grid.unep.ch/results. |
|                     | file,   | minute     |          |               | php                                  |
|                     | raster  | grid cells |          |               |                                      |
|                     | (grid)  |            |          |               |                                      |
| Ghana, Haiti,       | raster  | 1 arc-     | 2015     | CIESIN        | https://ciesin.columbia.edu/data/    |
| Malawi, South       | (grid)  | second     |          |               | hrsl/                                |
| Africa, Sri Lanka   |         |            |          |               |                                      |
| World               | Various | Various    | 2016     | dhsprogram    | http://spatialdata.dhsprogram.com/   |
|                     |         |            |          |               | home/                                |

## Transmission lines data

| UK    | shape-  | Power transmission lines, | na   | National   | http://www2.nationalgrid.com/uk/services/ |
|-------|---------|---------------------------|------|------------|-------------------------------------------|
|       | file    | underground cables, sta-  |      | Grid       | land-and-development/planning-authority/  |
|       |         | tions etc.                |      |            | shape-files/                              |
| US    | raster  | 100 m grid cells          | 2015 | ArcGIS on- | http://www.arcgis.com/home/item.html?id=  |
|       |         |                           |      | line       | 918e6d9b1cc84d15ba13e911d18a0c5e          |
| World | d OSM   | points or polylines       | 2015 | OSM of     |                                           |
|       | poten-  |                           |      | various    |                                           |
|       | tial    |                           |      | mirrors    |                                           |
| World | d From  | Power lines and utilities | na   | Can be     | http://gis-lab.info/qa/vmap0-eng.html     |
|       | Vmap    |                           |      | down-      |                                           |
|       | level 0 |                           |      | loaded     |                                           |
|       |         |                           |      | from:      |                                           |

## Power plants location data

| Cover- | Туре              | Resolution  |         | Year | Source     | Link                    |
|--------|-------------------|-------------|---------|------|------------|-------------------------|
| age    |                   |             |         |      |            |                         |
| World  | shapefile (4 lev- | Generators, | substa- | 2009 | Vmap level | http://gis-lab.info/qa/ |
|        | els)              | tions,masts |         |      | 0          | vmap0-eng.html          |

## Elevation

| Coverage     | Туре    | Resolution           | Year  | Source      | Link                                |
|--------------|---------|----------------------|-------|-------------|-------------------------------------|
| World        | geoTIFF | 30 m spatial resolu- | 2009  | METI Japan, | http://www.jspacesystems.or.jp/     |
|              |         | tion                 |       | NASA        | ersdac/GDEM/E/2.html                |
| World        | geoTIFF | 30 m posting, 1x1    | 2009, | METI Japan, | https://asterweb.jpl.nasa.gov/gdem. |
|              |         | degree tiles         | 2011  | NASA        | asp                                 |
| World        | .bil    | 15 arcsec-           | vari- | ISCGM       | https://globalmaps.github.io/       |
|              | and/or  | onds/30arcseconds    | ous   |             |                                     |
|              | .tif    |                      |       |             |                                     |
| World        | Geo-    | 16 arcsec-           | vari- | NOOA        | http://www.ngdc.noaa.gov/mgg/       |
|              | TIFF    | onds/30arcseconds    | ous   |             | topo/gltiles.html                   |
| World        | Geo-    | 17 arcsec-           | vari- | DGADV       | http://www.dgadv.com/dowdem/        |
|              | TIFF    | onds/30arcseconds    | ous   |             |                                     |
| World + Arc- | Geo-    | 30 arcseconds        | vari- | WebGIS      | http://www.webgis.com/terr_world.   |
| tic areas    | TIFF    |                      | ous   |             | html                                |

## Travel time to major cities

| Cover-   | Туре          | Res-  | Year       | Source     | Link                                     |
|----------|---------------|-------|------------|------------|------------------------------------------|
| age      |               | olu-  |            |            |                                          |
|          |               | tion  |            |            |                                          |
| World    | ESRI grid     | 30    | 2008       | Joint Re-  | http://forobs.jrc.ec.europa.eu/products/ |
|          |               | arc   | (data from | search     | gam/download.php                         |
|          |               | sec   | 2000)      | Center EU  |                                          |
| Africa   | csv, ESRI     | 5 arc | 2010       | Harvest    | https://dataverse.harvard.edu/dataset.   |
| (sub-    | ASCII raster, | sec   |            | Choice     | xhtml?persistentId=doi:10.7910/DVN/      |
| Saharan) | GeoTIFF       |       |            |            | YKDWJD                                   |
| World    | Raster, Geo-  | 5 arc | 2015       | Univeristy | https://map.ox.ac.uk/explorer/#/explorer |
|          | TIFF          | sec   |            | of Oxford  |                                          |

## Mining and Quarrying

| Cov-  | Туре            | Resolution    | Year  | Sour | ceLink                                               |
|-------|-----------------|---------------|-------|------|------------------------------------------------------|
| er-   |                 |               |       |      |                                                      |
| age   |                 |               |       |      |                                                      |
| USA   | Shapefile, csv, | Active mines  | 2003  | USG  | S http://mrdata.usgs.gov/mineplant/                  |
|       | KML, KMZ        | and mineral   |       |      |                                                      |
|       |                 | plants in the |       |      |                                                      |
|       |                 | US            |       |      |                                                      |
| Worle | d Shapefile,    | points        | 2012- | -    | http://minerals.usgs.gov/minerals/pubs/country/      |
|       | dBase, HTML,    |               | 2013  |      | ?utm_source=feedburner&utm_medium=feed&              |
|       | Tab text, csv,  |               |       |      | utm_campaign=Feed%3A+usgs_mpubs+%28USGS+             |
|       | Google earth    |               |       |      | Minerals+Periodicals%29                              |
|       |                 |               |       |      | http://mrdata.usgs.gov/mineral-resources/minfac.html |
|       |                 |               |       |      | http://mrdata.usgs.gov/mineral-operations/           |

## Solar

| Coverage | Туре                     | Resolution | Year | Source   | Link                           |
|----------|--------------------------|------------|------|----------|--------------------------------|
| World    | ESRI ASCII GRID, GeoTIFF | 250 m      | 2017 | SolarGIS | https://globalsolaratlas.info/ |

## Wind

| Cover- | Туре | Resolu- | Year | Source                           | Link                     |
|--------|------|---------|------|----------------------------------|--------------------------|
| age    |      | tion    |      |                                  |                          |
| World  | Geo- | 250m    | 2018 | Technological University of Den- | https://globalwindatlas. |
|        | TIFF |         |      | mark                             | info/                    |

## Land cover

| Cover-   | Туре                              | Resolu-  | Year        | Source    | Link                          |
|----------|-----------------------------------|----------|-------------|-----------|-------------------------------|
| age      |                                   | tion     |             |           |                               |
| World    | HDF-EOS                           | 500 m    | 2001-       | NASA-     | https://lpdaac.usgs.gov/      |
|          |                                   |          | 2018        | MODIS     | products/mcd12q1v006/         |
| World    | CI Land cover - raster            | 300 m    | time series | ESA       | http://maps.elie.ucl.ac.be/   |
|          |                                   |          | from 1992   |           | CCI/viewer/                   |
|          |                                   |          | to 2015     |           |                               |
| World    | GeoTiff, Google earth, jpeg,png   | 1-0.1    | 2001-       | NASA-     | http://neo.sci.gsfc.nasa.     |
|          |                                   | degrees  | 2010        | NEO       | gov/view.php?datasetId=       |
|          |                                   |          |             |           | MCD12C1_T1                    |
| World    | Raster, csv                       | 0.0028 - | 2000,       | ESA-      | http://maps.elie.ucl.ac.be/   |
|          |                                   | 0.0083   | 2005,       | ENVISAT   | CCI/viewer/index.php          |
|          |                                   | degrees  | 2010        |           |                               |
| World/Pr | ot <b>Schæpl</b> efile, KML, csv  | na       | 2014        | Protected | http://www.protectedplanet.   |
| areas    |                                   |          |             | planet    | net/                          |
| World    | various                           | various  | 2015        | Global    | http://landcover.org/data/    |
|          |                                   |          |             | Land      |                               |
|          |                                   |          |             | Cover     |                               |
|          |                                   |          |             | Facility  |                               |
| World    | Rasters for: Costal areas, Culti- | 0.00833  | 2000        | SEDAC     | http://sedac.ciesin.columbia. |
|          | vated areas, Forests, Mountains,  | degrees  |             |           | edu/data/set/ma-ecosystems/   |
|          | Islands, Inland waters etc.       |          |             |           | data-download                 |
| World    | Raster for croplands              | 0.0833   | 2000        | SEDAC     | http://sedac.ciesin.          |
|          |                                   | degrees  |             |           | columbia.edu/data/set/        |
|          |                                   |          |             |           | aglands-croplands-2000/       |
|          |                                   |          |             |           | data-download                 |
| World    | Various Rasters on Land Use       | various  | 1990-       | Nelson    | http://nelson.wisc.edu/sage/  |
|          |                                   |          | 2010        | Institute | data-and-models/datasets.     |
|          |                                   |          |             |           | php                           |
| World    | Soil type                         | various  | na          | Worldmap. | Haryard/worldmap.harvard.     |
|          |                                   |          |             |           | edu/data/geonode:             |
|          |                                   |          |             |           | DSMW_RdY                      |
| World    | Various Rasters on Land Use       | various  | 1980-       | EarthStat | http://www.earthstat.org/     |
|          |                                   |          | 2014        |           | data-download/                |

The model classifies the land cover in order to calculate the grid extension penalties. The default classification values are based on the MODIS dataset found here, where the legend ranges from 1-17 with the values and corresponding land cover type can be seen below. If land cover data is retrieved from other data sources with different classification values they should be reclassified in GIS (using the Reclassify tool in ArcGIS or r.reclass in QGIS) to match those below. Alternatively changes can be made in the Python code instead. If this reclassification is not performed it may lead to an incorrect grid penalty factor or, if the highest values are above 17, an error message while running the code.

| Value | Label                              |
|-------|------------------------------------|
| 1     | Evergreen Needleleaf forest        |
| 2     | Evergreen Broadleaf forest         |
| 3     | Deciduous Needleleaf forest        |
| 4     | Deciduous Broadleaf forest         |
| 5     | Mixed forest                       |
| 6     | Closed shrublands                  |
| 7     | Open shrublands                    |
| 8     | Woody savannas                     |
| 9     | Savannas                           |
| 10    | Grasslands                         |
| 11    | Permanent wetlands                 |
| 12    | Croplands                          |
| 13    | Urban and built-up                 |
| 14    | Cropland/Natural vegetation mosaic |
| 15    | Permanent snow and ice             |
| 16    | Barren                             |
| 17    | Water bodies                       |

## Others

| Coverage        | Туре         | Resolution                  | Year  | Source     | Link                      |
|-----------------|--------------|-----------------------------|-------|------------|---------------------------|
| World           | Coast Lines, | Physical vectors, ESRI      | 2015  | Natural    | http://www.               |
|                 | oceans       | shapefiles, GeoTIFF (1:10,  |       | Earth      | naturalearthdata.com/     |
|                 |              | 1:50 and 1:110 m)           |       |            | downloads/                |
| World           | Climate data | 30 arc seconds and 2.5/5/10 | na    | WorldClim  | http://www.worldclim.     |
|                 |              | arc minutes                 |       |            | org/                      |
| World/USA       | Climate      | various                     | na    | na         | https://gisclimatechange. |
|                 | change sce-  |                             |       |            | ucar.edu/                 |
|                 | narios       |                             |       |            |                           |
| World/Australia | Water and    | 0.05 to 1 degrees           | 1979- | Australian | http://www.wenfo.org/     |
|                 | Landscape    |                             | 2012  | National   | wald/data-software/       |
|                 | Dynamics     |                             |       | University |                           |
| Open Street     | osm.pbf      | depending on mirror source  | up    | NOAA       | http://ngdc.noaa.         |
| Map (OSM) -     |              |                             | to    |            | gov/eog/dmsp/             |
| Osmosis         |              |                             | date  |            | downloadV4composites.     |
|                 |              |                             |       |            | html                      |
| Nighttime       | Raster file  | 0.0042 degrees              | 2012- | na         | https://eogdata.mines.    |
| lights          |              |                             | 2020  |            | edu/download_dnb_         |
|                 |              |                             |       |            | composites.html           |
| Africa in-      | various      | vectors                     | var-  | AfDB       | http://dataportal.        |
| formation       |              |                             | ious  |            | opendataforafrica.org/    |
| Highway         |              |                             |       |            |                           |
| World           | Cliamte data | various                     | var-  | Oregon     | http://globalclimatedata. |
|                 |              |                             | ious  | State Uni- | org/                      |
|                 |              |                             |       | versity    |                           |

### Methodology for Open Street Map data and Osmosis

#### Note:

- Open Street Map (OSM) is a collaborative project that intends to provide free and open access data used in mapping the world. This document aims at describing in brief the methodology used in order to obtain OSM data and transform them in compatible and useful information with the use of Osmosis and QGIS.
- To begin with, bulk download of updated OSM data can be performed through the Planet OSM: http://planet. osm.org/.
- The files can be downloaded as .xml and .pbf format. However, due to the large volume of data there are various mirrors/extracts that provide access to masked data for different regions of the planet. More information can be found here: http://wiki.openstreetmap.org/wiki/Planet.osm#Downloading. In previous cases Geofabrik.de where used successfully (https://download.geofabrik.de/africa.html).
- From Geofabrik, data can be downloaded per region in .pbf format. In the latest version of QGIS it is possible to insert this data directly by simply dragging the file onto the QGIS window. However, since the files are usually very large it is recommended to transform the .pbf into a spatialite database.
- To do this transformation open up the OSGeo shell following with your installation, navigate to the folder in which you have your .pbf file (by typing cd [folder path]) and enter the following line: **ogr2ogr -f SQLite X.sqlite Y.pbf** (**Note!** change **X** to the name you want to use for your spatialite database and **Y** to the name of your downloaded .pbf file)
- Once This transformation is finished (it may take some time) drag the resulting .sqlite file into QGIS and work with it instead of the .pbf file.
- OSM data provide access to a tremendous amount of information of various types. Feel free to explore the potential and share the results with an enthusiastic community.

# 2.5 GIS data preparation

Once all necessary layers have been succesfully acquired, the user would need to prepare the datasets for their input into the OnSSET model. This requires the creation of a .csv file. There are four steps that need to be undertaken to process the GIS data so that it can be used for an OnSSET analysis.

## 2.5.1 Step 1. Proper data types and coordinate system

In this first step the user would need to secure all the datasets. Before starting the analysis make sure that all datasets have the same coordiante system (preferably **World Geodetic Datum 1984** (**WGS84**)) You can check the coordinate system of your layers by importing them into QGIS and then right-clicking on them and open the **Properties** window. In the Properties window go to the **Information** tab, here the coordinate system used is listed under *CRS* for both rasters and vectors.

## 2.5.2 Step 2. Layer projection

In this step the user would need to determine the projection system he/she wish to use. Projection systems always distort the datasets and the system chosen should be one that minimizes this distortion. **Do not** manually project the datasets yourself (the extraction plugin presented below does this for you) it is however good to have an idea of which system to use before starting to work with the datasets. Here follows a few important key aspects:

**Projection** is the systematic transformation of the latitude and longitude of a location into a pair of two dimensional coordinates or else the position of this location on a plane (flat) surface. A projection is necessary every time a map is created and all map projections distort the surface in some fashion.

Coordinate System: Simply put, it is a way of describing a spatial property relative to a center.

**Datum:** The center and orientation of the ellipsoid



## 2.5.3 Step 3. Generate population clusters

Once the previous steps are finished we can generate our population clusters. These clusters represents settlements and will set the base of your OnSSET analysis. To generate the clusters you need the three following dataset: Administratvie boundaries (polygon vector), Population (raster) and night-time lights (raster). In order to facilitate the cluster generation KTH-dES has developed QGIS based plugins available here

In the repository go to the **Plugin** folder and select the option that you wish to use. Currently there are four options to choose from:

- Option 1. Plugin developed for QGIS 3.10 (the latest stable version) and works with HRSL
- Option 2. Plugin developed for QGIS 3.4 and works with HRSL
- Option 3. Plugin developed for QGIS 3.2 and works with HRSL
- Option 4. Plugin developed for QGIS 3.2 and works with GHS

Once you have selected the option you wish to use, download the file named hrsl\_clustering.zip. In order to install and use the plugin please refer to the instructions published in its repository.

## 2.5.4 Step 4. Generate the OnSSET input file

Once the clusters are generated, we can combine all layers together into a single table. The principle is simple. We will use the clusters from **Step 3** in order to create a base table. Every row in this table represents a population settlement. Then, we will adhere one by one all the layers into this table so that every row (settlement) acquires its specific characteristics based on its location. One can perform the process manually by identifying the tools in the GIS environment of his/her preference.

In order to facilitate the process KTH-dES has prepared a set of QGIS plugins that can be used. The plugin is available in the **Plugin** folder in the following repository.

There are three options:

- Option 1. Works for QGIS 3.10 (latest LTR)
- Option 2. Works for QGIS 3.4
- Option 3. Works for QGIS 3.2

Choose the one that suits you, download the corresponding .zip-file named gep\_onsset and follow the instructions in its repository in order to intall and run the plugin.

## 2.5.5 GIS country file

The table below shows all the parameters that should be sampled and put into the csv file representing the study area.

| Parameter                   | Description                                                   |
|-----------------------------|---------------------------------------------------------------|
| Country                     | Name of the country                                           |
| Nigthlights                 | Maximum light intensity observed in cluster                   |
| Рор                         | Population of cluster                                         |
| id                          | Id of cluster, important when generating maps                 |
| GridCellArea                | Area of each cluster (km2)                                    |
| ElecPop                     | Population that lives in areas with visible night-time lights |
| WindVel                     | Wind speed (m/s)                                              |
| GHI                         | Global Horizontal Irradiation (kWh/m2/year)                   |
| TravelHours                 | Distance to the nearest town (hours)                          |
| ResidentialDemandTierCustom | Indicative residential electricity demand target              |
| Elevation                   | Elevation from sea level (m)                                  |
| Slope                       | Ground surface slope gradient (degrees)                       |
| LandCover                   | Type of land cover as defined by the source data              |
| CurrentHVLineDist           | Distance to the closest existing HV line (km)                 |
| CurrentMVLineDist           | Distance to the closest existing MV line (km)                 |
| PlannedHVLineDist           | Distance to the closest planned HV line (km)                  |
| PlannedMVLineDist           | Distance to the closest planned MV line (km)                  |
| TransformerDist             | Distance from closest existing transformers (km)              |
| SubstationDist              | Distance from the existing sub-stations (km)                  |
| RoadDist                    | Distance from the existing road network (km)                  |
| HydropowerDist              | Distance from closest identified hydropower potential (km)    |
| Hydropower                  | Closest hydropower technical potential identified             |
| HydropowerFID               | ID of the nearest hydropower potential                        |

continues on next page

| Parameter              | Description                                                                           |
|------------------------|---------------------------------------------------------------------------------------|
| X_deg                  | Longitude                                                                             |
| Y_deg                  | Latitude                                                                              |
| IsUrban                | All 0 after extraction, urban/rural split gets assigned in the algorithm              |
| PerCapitaDemand        | Indicative residential electricity demand target                                      |
| HealthDemand           | Indicative electricity demand for health                                              |
| EducationDemand        | Indicative electricity demand for educational facilities                              |
| AgriDemand             | Indicative electricity demand for agricultural processes                              |
| ElectrificationOrder   | Indicates order of electrification; retrieved by grid extension algorithm; default =0 |
| Conflict               | Indicator of level of conflict (default =0; otherwise option 1-4)                     |
| CommercialDemand       | Indicative electricity demand target for commercial activity                          |
| ResidentialDemandTier1 | Indicative residential electricity demand target equal to Tier 1                      |
| ResidentialDemandTier2 | Indicative residential electricity demand target equal to Tier 2                      |
| ResidentialDemandTier3 | Indicative residential electricity demand target equal to Tier 3                      |
| ResidentialDemandTier4 | Indicative residential electricity demand target equal to Tier 4                      |
| ResidentialDemandTier5 | Indicative residential electricity demand target equal to Tier 5                      |

| Table 1 – continued from previous pa |
|--------------------------------------|
|--------------------------------------|

**Note:** It is very important that the columns in the csv-file are named exactly as they are namned in the **Parameter**-column in the table above.

# 2.6 Techno-economic and demographic parameter

## 2.6.1 Input model parameters

In order to run the OnSSET analysis certain input parameters have to be used. Some of these are specified directly in the Python code while others are specified in an excel specs file.

## Python input parameters

The values for the parameters in the table below are already filled in the OnSSET Python files. However, some of these may need to be updated with new or country specific values.

| Parameter                | Description                           | Unit        |
|--------------------------|---------------------------------------|-------------|
| BASE_YEAR                | The base year of the analysis. Note   | •           |
|                          | that this parameter is highly related |             |
|                          | to the input GIS data, which should,  |             |
|                          | if possible, be calibrated towards    |             |
|                          | this year (e.g. the population dis-   |             |
|                          | tribution map should represent the    |             |
|                          | base year values).                    |             |
| END_YEAR                 | The final year of the analysis.       | •           |
|                          |                                       |             |
| Scenario                 | The input value here represents the   | kWh/hh/year |
|                          | annual electricity consumption per    |             |
|                          | household that is expected to be      |             |
|                          | achieved, by the end year.            |             |
| sa_diesel_capital_cost   | The capital cost (per capacity unit)  | \$/kW       |
|                          | of a stand- alone diesel generator.   |             |
| sa_pv_capital_cost       | The capital cost (per capacity unit)  | \$/kW       |
|                          | of a stand- alone PV module.          |             |
| mg_diesel_capital_cost   | The capital cost (per capacity unit)  | \$/kW       |
|                          | of a mini grid diesel generator.      |             |
| mg_pv_capital_cost       | The capital cost (per capacity unit)  | \$/kW       |
|                          | of a mini grid PV system.             |             |
| mg_wind_capital_cost     | The capital cost (per capacity unit)  | \$/kW       |
|                          | of a mini grid wind powered system.   |             |
| mg_hydro_capital_cost    | The capital cost (per capacity unit)  | \$/kW       |
|                          | of a mini grid hydropower system.     |             |
| existing_grid_cost_ratio | Incremental cost increase for exten-  | ratio       |
|                          | sion of the grid from an electrified  |             |
|                          | settlement to an un-electrified one.  |             |
|                          | Default value set at 10%.             |             |
| discount_rate            | The discount rate applied to dif-     | ratio       |
|                          | ferent technology configuration       |             |
|                          | choices throughout the period of      |             |
|                          | analysis                              |             |
| grid_cell_area           | The size of each grid cell used in    | km2         |
|                          | the study area. This value typically  |             |
|                          | ranges between 1 and 10 km2           |             |

## 2.6.2 Discount rate

The discount rate is a rather important factor when doing modelling and planning for energy systems. This has to do with the fact that the discount rate is aimed at the variable cost. In other words a high discount rate tends to favour technologies with high variable costs (e.g. technologies that use non-renewable fuels), while lower discount rates favours technologies with high capital investment (e.g. renewables). This makes it a very good variable for running sensitivity analysis. For realistic values of the discount rate study the literature regarding your studyarea.

## 2.6.3 Off-grid technology costs

When calculating the total cost for the off-grid technologies (all the stand-alone and mini-grid systems) there are several different costs that need to be taken into account. The technology is a fixed cost that need to be taken into account, but the variable costs necessary for generating electricity also have to be taken into account (e.g. fuel costs). The cost of installing the system also need to be taken into account. The connection to the grid is however excluded and hence not taken into consideration.

#### Specs-file input parameters

The inputs in the table below should be entered in an .xlsx file namned CountrySpecs.xlsx (Replace Country with the name of the area studied)

| Parameter   Description    | Unit                                                                                                                                                                                                                          |                     |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Country                    | Enter the name of the study area                                                                                                                                                                                              | •                   |
| Pop2015                    | The population of the selected area in the base year.                                                                                                                                                                         | People              |
| UrbanRatio2015             | The ratio of urban population in the selected area in the base year.                                                                                                                                                          | Ratio               |
| Pop2030                    | The projected population                                                                                                                                                                                                      | People              |
| UrbanRatio2030             | The ratio of urban population in the selected area in the end year.                                                                                                                                                           | Ratio               |
| NumPeoplePerHHRural        | Number of people per household in rural areas                                                                                                                                                                                 | People              |
| NumPeoplePerHHUrban        | Number of people per household in urban areas                                                                                                                                                                                 | People              |
| DieselPriceLow             | The low price of diesel. Used in the calculation of the operational costs for diesel generators (in both mini grid and stand-alone systems).                                                                                  | \$/liter            |
| DieselPriceHigh            | The high price of diesel. Used in the calculation of the operational costs for diesel generators (in both mini grid and stand-alone systems).                                                                                 | \$/liter            |
| GridPrice                  | The cost of which the national grid<br>generates electricity. This value is<br>based on the mix of technologies<br>used in the country.                                                                                       | \$/kWh              |
| GridCapacityInvestmentCost | The investment required per unit of<br>additional capacity for the national<br>grid. This is an average value based<br>on,the mix of technologies used in<br>the country.                                                     | \$/kWh              |
| GridLosses                 | This value represents the country's average technical losses on transmission and distribution.                                                                                                                                | Ratio               |
| BaseToPeak                 | This value represents the ratio be-<br>tween the base and peak load in the<br>selected country. It is used for sizing<br>the necessary capacity to be installed<br>per settlement in order to cover the<br>respective demand. | Ratio               |
| ExistingGridCostRatio      | Incremental cost increase for exten-<br>sion of the grid from an electrified<br>settlement to an un-electrified one.<br>Default value set at 10%.                                                                             | Ratio               |
| MaxGridExtensionDist       | The input parameter sets the max-<br>imum distance for which the grid<br>can be extended in order to electrify<br>a settlement due to techno-ecoomic<br>considerations. The default value in<br>the model is 50km.            | km                  |
| ElecActual                 | The electrification rate in the se-<br>lected area in the base year. What<br>ratio of population is electrified.                                                                                                              | Ratio               |
| MinNightLights             | Night time light is an indicator                                                                                                                                                                                              | [0-63]              |
| 34                         | retrieved by NASA's satellite im-<br>ageries and it represents light inten-<br>sity over a geographical area. The<br>value ranges from 0 to 63 with                                                                           | Chapter 2. Contents |

The variables *MinNightLights, MaxGridDist, MaxRoadDist, PopCutOffRoundOne, PopCutOffRoundTwo* and *Urban-CutOff* are not found in the literature but rather defined by the user. When running the code these values are altered to find a combination that satisfies that the cells are assigned electrified and urban status matching the values entered at *ElecActual* and *UrbanRatio2015*.

All the values with ratio as the unit should take a value between 0 and 1 in the excel file.

## 2.6.4 Diesel pump price

For the diesel price the best option is to find the diesel price directly from the literature regarding your studyarea. In cases for which this is not possible you should try to find the crude oil price in your country. 1.15 is an emperical value used in order to estimate the diesel price (\$/liter) from the crude oil price(\$/liter). It is assumed that the price of diesel is 15% higher than the crude oil price. If you have difficulties finding the crude oil price in your area of interest you can refer to e.g. http://www.oecd-ilibrary.org/energy/world-energy-outlook\_20725302.

## 2.6.5 Household size

The household size is an important parameter in the electrification planning analysis as it affects the connection costs per household. These are calculated based on:

- a) the projected mean national household size values
- b) the existing and projected national, urban and rural populations
- c) the urban to rural household size ratio given in demographics and health country surveys.

**Note:** It is very important that the columns in the Specs-file are named exactly as they are namned in the **Parameter**-column in the table above.

# 2.7 Running the analysis

## 2.7.1 Setting up PyCharm - Afghanistan Demo

1. Download the code from **GitHub** here.

Select "Download ZIP" from the "Clone or Download" tab and save the zipped folder on your Desktop. Unzip it and open the "Afghanistan\_PyOnSSET" folder. If not already there, create a folder and name it "run". This folder will contain the final output with the results.

- 2. Download the "Afghanistan.csv" dataset from here (to be updated) and save it in "~/PyOnSSET-master/Afghanistan\_PyOnSSET/db".
- Once you have successfully completed all the previous steps, open PyCharm or any other Python IDE framework. Select "Open" and then select "~/Desktop/PyOnSSET-master/Afghanistan\_PyOnSSET" as your working directory as shown below:



4. Go to *File*->\*Default Settings\*->\*Project Interpreter\* and from the drop-down list select the Anaconda directory which we installed in the previous steps. Once all the packages load, click Apply and OK.

| Project Interpreter  | 信For default project                      |
|----------------------|-------------------------------------------|
| Project Interpreter: |                                           |
|                      |                                           |
|                      | 🚽 3.6.1 (C:\Users\ \Anaconda3\python.exe) |
|                      | Show All                                  |

5. Once you have set your working directory, select "pyonsset", and from the drop-down menu double-click on a) onsset.py and b) runner.py in that order, in order to open them.



6. Now that you have opened "onsset.py", right-click on its tab and click on "Create/Select 'onsset'...".

| 🦢 onss | Close                        | Ctrl+F4                |
|--------|------------------------------|------------------------|
|        | Close <u>O</u> thers         |                        |
| 1      | Close <u>All</u>             |                        |
| 2      | Close All but Pinned         |                        |
| 3      | Copy Path                    | Ctrl+Shift+C           |
| 4      | Copy Palative Dath           | Ctal + Alt + Shift + C |
| 12     |                              | Ctri+Ait+Shiit+C       |
| 13     | Split Vertically             |                        |
| 14     | ₩ Split <u>H</u> orizontally |                        |
| 15     | Move Right                   |                        |
| 16     | Move Down                    |                        |
| 17     | P <u>i</u> n Tab             |                        |
| 18     | Tabs Placement               | ►                      |
| 19     | Sort Tabs By Filenam         | 2                      |
| 21     | Open New Tabs At Th          | e End                  |
| 22     |                              |                        |
| 23     | Select Next Tab              | Alt+Right              |
| 24     | Select Previous Tab          | Alt+Left               |
| 25     | Reopen Closed Tab            |                        |
| 26     | Add to F <u>a</u> vorites    | ►                      |
| 27     | Add All To Favorites         | •                      |
| 2.9    | Run 'onsset'                 | Ctrl+Shift+F10         |
| 30     | 👾 Debug 'onsset'             |                        |
| 31     |                              |                        |
| 32     | - Create onsset              |                        |
| 33     | Local History                | 4                      |
| 34     | Create Gist                  |                        |

#### Note:

• In the configuration window, make sure that the Anaconda interpreter is selected in the "Python interpreter" option before you click OK.

| Environment            |                                                                  |
|------------------------|------------------------------------------------------------------|
| Environment variables: | PYTHONUNBUFFERED=1                                               |
| Python interpreter:    | Project Default (Python 3.6.1 (C:\Users\ \Ar 🔽                   |
| Interpreter options:   | Project Default (Python 3.6.1 (C:\Users\ \Anaconda3\python.exe)) |
| Working directory:     | Python 3.6.1 (C:\Users\ \Anaconda3\python.exe)                   |

• You are now ready to run "onsset.py" by clicking the Run button at the upper-right corner of your window.



• Repeat the same steps explained above for "runner.py" only if you get a "Process finished with exit code 0" message in the built-in console. Otherwise, move to step 7 before you run "runner.py".

7. After running a python script, the output is shown in the console built in PyCharm.

- If you get a "Process finished with exit code 0" message, that means that everything worked OK.
- Otherwise, the console shows messages with errors or warnings. In case you get a "Module Not Found Error" message, that means that a module or package is missing.

## 2.7.2 Installing/updating modules and packages

1. Using Anaconda

Search for "Anaconda Prompt" in your Windows Search. In the command line, type conda install <package name> and the installation/update will go through automatically. (Note: In the Proceed ([y]/[n])? prompt, type "y").

e.g. installation of module "pyproj"



2. pip

**pip** is a package management system used to install and manage software packages written in Python. Search for "Command Prompt" in your Windows Search. Using the command line, navigate to your Python directory and then type "pip" and enter. This will show you all the possible choices you have within pip.

• In order to update pip itself you can just type pip install --upgrade pip.

| 🔤 Administrator: ( | Administrator: Command Prompt |                    |                  |                |            |   |  |  |
|--------------------|-------------------------------|--------------------|------------------|----------------|------------|---|--|--|
| C:\Users\          | \ Local                       | \Programs\Python\P | ython35-32\Scrip | ts≻pip install | upgrade pi | р |  |  |
|                    |                               |                    |                  |                |            |   |  |  |
|                    |                               |                    |                  |                |            |   |  |  |
|                    |                               |                    |                  |                |            |   |  |  |
|                    |                               |                    |                  |                |            |   |  |  |
|                    |                               |                    |                  |                |            |   |  |  |
|                    |                               |                    |                  |                |            |   |  |  |
|                    |                               |                    |                  |                |            |   |  |  |

• In order to install any additional module required you can type pip install <package name>.

e.g. installation of module "matplotlib" pip install matplotlib

Administrator: Command Prompt



3. Directly in PyCharm

Go to the project interpreter (*File>Settings>Project Interpreter*). Click on the green plus-sign in the upper right corner.

| img/A3.jpg |  |
|------------|--|
|            |  |

Search for the required package and click Install Package.

## 2.7.3 Running the code

There are two Python codes that are required to run the analysis; onsset.py and runner.py.

**onsset.py** defines most of the functions and calculations behind the analysis. Running this code however does not perform the analysis. **runner.py** is the code that actually executes the analysis. When running this code the user will be propmpted to enter several inputs, explained below, and runner.py will then retrieve the functions from onsset.py.

#### Note:

Please make sure to:

- Not edit or modify in any way your input/output .csv files unless required.
- Close any open .csv files before running the programs.

Two changes in the Python code may be required to be able to run the analysis.

Line 8 in runner.py may be changed from from pyonsset.onsset import \* to from onsset import \* if runner.py and onsset.py are saved in the same folder.

In runner.py line 11, change directory from db to the one where the .csv file containing the prepared GIS data and the specs file are stored. The line should then look like e.g. os.chdir('C:/Desktop/Afghanistan\_PyOnSSET/db').

OnSSET is then ready to be executed. Press run and enter the specified information when prompted. The runner will appear at the bottom of the window and look like:



First the program will ask for the name of the specs file. Enter the name of the specs file and press enter, and remember to include the file extension. The specs file should be an excel file, and the entry should therefore be e.g. Specs.xlsx.

Secondly the countries of the study are required. Enter the name of the country and press enter. If more than one country are included in the study enter the names of all countries separated by a blank space (Example: Afghanistan Pakistan)

**Note:** Python is sensitive to upper and lower case letters. Always make sure that names of files, directories and countries are matching exactly when running the code and entering information.

The name of the specs file and the country names need to be entered every time. The rest of the code has been divided into three parts with different functionalities. Next you will be asked to 'Enter 1 to split, 2 to prep, 3 to run a scenario: '. The function of the three options are to:

1. Split a csv file containing GIS data for multiple countries into csv files that each has the data for one of the countries. If the original .csv file is for one country only this step can be skipped.

2. Calculate some initial data needed for the electrification analysis, such as projected population, wind capacity factors etc. This step needs to be run only once to use OnSSET for one area.

3. Perform the electrification analysis. Once the previous steps have been run the third part can be run multiple times to examine scenarios with e.g. different electricity access targets or fuel costs.

**Step 1: Split** When prompted, enter the name of the file containing data for multiple countries and press enter. Example: Countries.csv. Again remember to include the file extension.

Next enter the directory where the new files should be saved. This can be the same directory as the file containing all the countries or a new one with separated countries only e.g. C:/Desktop/Afghanistan\_PyOnSSET/db/ countryfiles. A new directory is recommended to prevent overwriting of the original .csv file if it is named after a country.

OnSSET then creates new .csv files with data for each country. The files will be stored with the name of the country followed by the .csv extension, e.g. Afghanistan.csv.

**Step 2: Prep** The preparation step starts by prompting the user to enter the directory where the separated country files are saved. If selection 1 was executed the entry should be the one specified for output in selection 1 (C:/Desktop/Afghanistan\_PyOnSSET/db/countryfiles), otherwise it is the directory where the original .csv file is stored (e.g. C:/Desktop/Afghanistan\_PyOnSSET/db). If selection 1 has not been executed the csv file must be named country.csv (e.g. Afghanistan.csv) or OnSSET will not be able to find it.

For each country chosen initially the prepping will be executed and the .csv file with GIS data will be overwritten in the same folder with a new file with the same name (e.g. Afghanistan.csv) containing additional information. The specsfile is overwritten as well with updated data for *MaxGridDist*, *MinNightLights* and *MaxRoadDist* as well as *ElecModelled* which is the calculated value for the electrified population in the base year. After running step 2, open the specs file to check if *ElecModelled* is sufficiently close to *ElecActual*. If not, change tha values of *MaxGridDist*, *MinNightLights*, *MaxRoadDist*, *PopCutOffRoundOne* and/or *PopCutOffRoundTwo* and run step 2 again until *ElecModelled* is sufficiently close to *ElecActual*.

**Step 3: Run scenario(s)** In the third selection the electrification scenarios are run. This part of the code need to be run once for every scenario. The user is first prompted to specify where the prepped files from selection 2 are saved. Enter the same as was entered in selection 2. Secondly the user is prompted to enter where the result files should be saved. The result files will save as *Scenario\_Tier\_Dieselchoice.csv* and *Scenario\_Tier\_Dieselchoice.csv* (Example: Afghanistan\_1\_High.csv for a Tier 1 analysis with high diesel price).

The following step is to enter the electricity target simply by typing the tier number between 1-5 and pressing enter for urban and rural areas respectively. The annual household electricity consumption is displayed in the terminal:

World Bank Tiers of Electricity Access 1: 7.738 kWh/person/year 2: 43.8 kWh/person/year 3: 160.6 kWh/person/year 4: 423.4 kWh/person/year 5: 598.6 kWh/person/year Enter the tier number for urban: 1 Enter the tier number for rural: 1

Next step is to choose between the high and low diesel price from the specs file. For the question Use high diesel value?  $\langle y/n \rangle$  `` enter ``y to use the high diesel cost or n to use the low diesel cost.

The final input required before running the analysis is if a result file should be created for each country in the analysis or if a combined result file should be created: Combine countries into a single file?  $\langle y/n \rangle$ . Enter y to combine or n to generate separate files. Following this step the electrification analysis is executed.

**Note:** Sometimes it may be of interest to run scenarios with the same energy tier and diesel price while changing other variables such as the discount rate. In a case with two runs with the same energy tier and diesel price the first result files will be overwritten. Remember to move or rename them before initiating the second run.

## 2.8 Analysis and visualizations

The output of the analysis are two csv files. One large file containing data for each geolocated cell and one smaller file with summarized data.

## 2.8.1 Output parameters

The following table displays the parameters included in the excel file that includes all the grid cells. The first 18 parameters come from the input csv file while the remaining stem from running the Python code.

| Parameter        | Description                                                                                 |
|------------------|---------------------------------------------------------------------------------------------|
| Country          | Name of the country                                                                         |
| Рор              | Population in base year                                                                     |
| Х                | Longitude                                                                                   |
| Y                | Latitude                                                                                    |
| GHI              | Global Horizontal Irradiation (kWh/m2/year)                                                 |
| SolarRestriction | Defines if an areas is restricted to solar PV deployment (1: restricted, 0: non restricted) |
| WindVel          | Wind speed (m/s)                                                                            |
| TravelHours      | Distance to the nearest town (hours)                                                        |
| NightLights      | Nighttime light intensity (0-63)                                                            |
| Elevation        | Elevation from sea level (m)                                                                |
| Slope            | Ground surface slope gradient (degrees)                                                     |
| LandCover        | Type of land cover as defined by the source data                                            |
| GridDistCurrent  | Distance from the existing electricity grid network (km)                                    |
| GridDistPlan     | Distance from the planned electricity grid network (km)                                     |
| SubstationDist   | Distance from the existing sub-stations (km)                                                |
| RoadDist         | Distance from the existing and planned road network (km)                                    |
| HydropowerDist   | Distance from identified hydropower stations (km)                                           |

| Parameter                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hydropower               | Closest hydropower technical potential identified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| X_deg                    | Longitude in degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Y_deg                    | Latitude in degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RoadDistClassified       | Classification of the distance from road network based on a suitability index ranging from 1 to 5 (1 implying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SubstationDistClassified | Classification of the distance from sub-stations based on a suitability index ranging from 1 to 5 (1 implying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LandCoverClassified      | Classification of the land cover based on a suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying the lowest suitability index ranging from 1 to 5 (1 implying |
| ElevationClassified      | Classification of the elevation value based on a suitability index ranging from 1 to 5 (1 implying the lowest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SlopeClassified          | Classification of the slope gradient based on a suitability index ranging from 1 to 5 (1 implying the lowest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| GridClassification       | Classification of the distance to the grid network based on a suitability index ranging from 1 to 5 (1 implyi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| GridPenalty              | Multiplier of the grid expansion cost based on a suitability index deriving from a weighted aggregation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| WindCF                   | Identified capacity factor of wind turbines (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Pop2015Act               | Population in 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| IsUrban                  | Percentage of urban population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pop2030                  | Population in 2030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Elec2015                 | Electrification status of population in 2015 (0 un-electrified - 1 electrified)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NewConnections           | Number of un-electrified population that is expected to get access to electricity by the end year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| mg_hydro                 | Levelized cost of electricity achieved by mini grid hydropower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mg_pv                    | Levelized cost of electricity achieved by mini grid PV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mg_wind                  | Levelized cost of electricity achieved by mini grid wind turbines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| mg_diesel                | Levelized cost of electricity achieved by mini grid diesel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| sa_diesel                | Levelized cost of electricity achieved by stand-alone diesel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| sa_pv                    | Levelized cost of electricity achieved by stand-alone PV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| minimum_tech             | Off grid technology that provides the lowest levelized cost of electricity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| minimum_tech_lcoe        | The lowest levelized cost of electricity selected between off grid technologies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Elec2030                 | Grid connection status in 2030 (1 implies grid connection - 0 implies off grid solution)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| grid                     | Levelized cost of electricity achieved by the grid (99 implies grid un-suitability)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MinGridDist              | Distance from the existing and planned grid network (km)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| minimum_overall          | Technology that provides the lowest levelized cost of electricity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| minimum_overall_lcoe     | The lowest levelized cost of electricity selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| minimum_overall_code     | Code of technology selected (1:grid, 2:stand-alone diesel, 3:stand-alone PV, 4:Mini-grid diesel . 5: Mini-g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| minimum_category         | Type of optimal supply type (Grid – Mini grid – Stand-alone)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NewCapacity              | Capacity requirement (kW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| InvestmentCost           | Investment requirement (USD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

## Table 2 – continued from previous page

## 2.8.2 Summaries output

The values in the summaries file provide summaries for the whole country/study area.

| Variable        | Description                             | Unit   |
|-----------------|-----------------------------------------|--------|
| Population      | The population served by                | people |
|                 | each,technology in the end year.        |        |
| New Connections | The number of newly electri-            | people |
|                 | fied, population by each technology     |        |
|                 | in the end year.                        |        |
| Capacity        | The additional capacity required        | kW     |
|                 | by,each technology to fully cover the   |        |
|                 | demand in the end year.                 |        |
| Investment      | The investment required by              | \$     |
|                 | each,technology to reach the            |        |
|                 | electrification target in the end year. |        |
| Technology mix  | Generation mix as calculated by         | •      |
|                 | the,OnSSET analysis.                    |        |
| LCoE            | Lowest LCoE achieved in each lo-        | \$/kWh |
|                 | cation, as calculated by the OnSSET     |        |
|                 | analysis.                               |        |

## 2.8.3 Maps output

#### Creating maps in ArcGIS or other GIS software

Visualization of the model outputs are an important part of a geospatial electrification analysis. This allows for an easy display of electrification strategies and enhanced understanding of the results. The most flexible way of visualizing the results are to create the maps using a GIS program. In QGIS, go to *Layer>Add Layer>Add Delimited TextLayer* and select the result .csv file containing the scenario results to be displayed. Next, choose the column with the coordinates as well as the projection system to generate a map. For the X and Y Field choose X and Y for coordinates in km or X\_deg and Y\_deg for coordinates in degrees.

| Q Data Source Manager   Delimited Text |                                                        |            |                |                 |                 |                | ?       | $\times$ |
|----------------------------------------|--------------------------------------------------------|------------|----------------|-----------------|-----------------|----------------|---------|----------|
| Erowser                                | File Name C:\OSGeo4W64\Lesotho\Lesotho                 | .csv       |                |                 |                 |                |         |          |
| V Vector                               | Layer Name Lesotho                                     |            |                |                 | E               | incoding UTF-8 |         | •        |
| Raster                                 | <ul> <li>Record and fields options</li> </ul>          |            |                |                 |                 |                |         |          |
| 2 Delimited Text                       | Number of header lines to discard 0                    |            | •              | Decimal separat | or is comma     |                |         |          |
|                                        | ✓ First record has field names                         |            |                | Trim fields     |                 |                |         |          |
| CeoPackage                             |                                                        |            |                | Discard empty f | ìelds           |                |         |          |
| 🖉 + SpatiaLite                         | ▼ Geometry definition                                  |            |                |                 |                 |                |         |          |
| PostgreSQL                             | Point coordinates                                      | X field X  |                |                 |                 |                | •       |          |
| MSSQL                                  | 🔿 Well known text (WKT)                                | Y field Y  |                |                 |                 |                | •       |          |
|                                        | <ul> <li>No geometry (attribute only table)</li> </ul> | D          | MS coordinates |                 |                 |                |         |          |
|                                        | Geometry CRS                                           | EPSG:4326  | - WGS 84       |                 |                 |                | - 🌚     |          |
| DB2 DB2                                | <ul> <li>Laver settings</li> </ul>                     |            |                |                 |                 |                |         |          |
| Virtual Layer                          |                                                        |            | ubset index    |                 | Watch file      |                |         |          |
| Real WMS/WMTS                          |                                                        | 0303       | abset macx     |                 | water nie       |                |         |          |
| <u>↔</u>                               | Sample data                                            |            |                |                 |                 |                |         |          |
| ₩CS                                    | pop2015Les elevation                                   | landcove   | r nightlight   | slope           | solar           | solarrestr     | trav 📤  |          |
| WFS WFS                                | 1 15.6105766300 2753.000000000                         | 10.000000  | 000            | 3.2661781311    | 1965.000000000  | 1.000000000    | 2.200   |          |
|                                        | 2 18.3053245540 2624.000000000                         | 10.0000000 | 000            | 3.3811542988    | 1966.0000000000 | 1.0000000000   | 2.283 🚽 |          |
| ArcGIS Map Server                      |                                                        |            |                |                 |                 |                |         | Ŧ        |
| ArcGIS Feature Server                  |                                                        |            |                |                 |                 |                |         |          |
| GeoNode                                |                                                        |            |                |                 | Close           | Add            | Help    |          |

After doing this you get a point layer in your layer panel. Right-click on the layer and go to *Properties>Symbiology*. Remove the border of all the circles.

| Q           | Layer Properties - Leso | tho   Symbology                        |                                                                                      | ?                         | ×    | < |
|-------------|-------------------------|----------------------------------------|--------------------------------------------------------------------------------------|---------------------------|------|---|
| Q           |                         | Single symbol                          | k                                                                                    |                           | -    | - |
| i           | Information             | <ul> <li>Marke</li> <li>Sim</li> </ul> | r<br>ole marker                                                                      |                           |      |   |
| <b>3</b>    | Source                  |                                        | •                                                                                    |                           |      |   |
| ~           | Symbology               |                                        |                                                                                      |                           |      |   |
| abc         | Labels                  |                                        |                                                                                      |                           |      |   |
| ٩.          | Diagrams                | Symbol layer type                      | Simple marker                                                                        |                           | -    |   |
| <b>&gt;</b> | 3D View                 | Size                                   | 2.000000                                                                             | Millimeter 💌              | €.   |   |
|             | Source Fields           | Fill color                             |                                                                                      |                           |      |   |
| 8           | Attributes Form         | Stroke color                           |                                                                                      |                           | €.   |   |
| • 🖌         | Joins                   | Stroke style                           | Solid Line                                                                           | •                         | €.   |   |
|             | Augustion Changes       | Stroke width                           | Hairline                                                                             | Millimeter 💌              |      |   |
|             | Auxiliary Storage       | Join style                             | Revel                                                                                | -                         |      |   |
| ्र          | Actions                 | Rotation                               | 0.00 °                                                                               | \$                        |      |   |
| <b>~</b>    | Display                 |                                        | x 0.000000                                                                           |                           |      |   |
| *           | Rendering               | Offset                                 | y 0.000000                                                                           | Millimeter 💌              |      |   |
| 3           | Variables               |                                        | VCenter                                                                              | -                         |      |   |
| 2           | Metadata                | Anchor point                           | HCenter                                                                              | -                         | €.   |   |
|             | Dependencies            |                                        | $\bigcirc \bigcirc \triangle \triangle \Rightarrow \uparrow \bigcirc + + \times   >$ | $\triangleright$ $\frown$ |      | - |
| =           | Legend                  | 0 0                                    |                                                                                      |                           | <∎,  |   |
|             | QGIS Server             | Style -                                | OK Cancel                                                                            | Apply                     | Help | - |

And then you can choose how to vizualise your data. Choose **Categorized** for discrete data and **Graduated** for continuous data. In column choose the data you want to vizualise and then click on classify.

| Q        | Layer Properties - Leso | ti No symbo                | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 1        |
|----------|-------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|
| Q        |                         | 😑 Single syn               | ibol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | <b>^</b> |
| i        | Information             | 🚘 Categoriz<br>🚘 Graduated | ed<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |          |
| <b>3</b> | Source                  | Rule-base Point disp       | d<br>acement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | 1        |
| ~        | Symbology               | Point clus                 | er in the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |          |
| abc      | Labels                  | Heatmap                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 1        |
| ۹.       | Diagrams                | Symbol layer type          | Simple marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • | 2        |
| <b>?</b> | 3D View                 | Size                       | 2.000000 🗘 Milimeter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |          |
|          | Source Fields           | Fill color                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |          |
| :8       | Attributes Form         | Stroke color               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |          |
| • ◀      | Joins                   | Stroke style               | No Pen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |          |
| đ        | Auxiliary Storage       | Stroke width               | Hairline 🗘 Milimeter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |          |
| ٩        | Actions                 | Join style                 | The second secon |   |          |
| -        | Display                 | Rotation                   | x 0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |          |
| *        | Rendering               | Offset                     | y 0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |          |
| 3        | Variables               | Anchor point               | VCenter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |          |
|          | Metadata                | Sharor point               | HCenter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |          |
|          | Dependencies            |                            | $\bigcirc \bigcirc \bigtriangleup \bigtriangleup \bigtriangleup \bigstar \bigstar \textcircled{1} \bigcirc + + \checkmark \lor > \land \frown$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 |          |

| <b>Q</b> I | Q Layer Properties - Lesotho   Symbology |                 |                                                                                  |        | ?      | $\times$    |        |      |
|------------|------------------------------------------|-----------------|----------------------------------------------------------------------------------|--------|--------|-------------|--------|------|
| Q          |                                          | 🔄 🚘 Graduated   |                                                                                  |        |        |             |        | -    |
| i          | Information                              | Column          | 1.2 elevation                                                                    |        |        | 3           |        |      |
| 20         | Source                                   | Symbol          |                                                                                  | Change |        |             |        |      |
| ~          | Symbology                                | Legend Format   | %1 - %2                                                                          |        |        | Precision 0 | \$     | Trim |
| $\sim$     |                                          | Method          | Color                                                                            |        |        |             |        | -    |
| abc        | Labels                                   | Color ramp      |                                                                                  |        |        |             |        |      |
| <b>*</b>   | Diagrams                                 | Classes H       | istogram                                                                         |        |        |             |        |      |
|            | 3D View                                  | Symbol Va       | lues Legend                                                                      |        |        |             |        |      |
|            | Source Fields                            | <b>v</b> • 10   | 312.80 - 2224.60 1812.8000 - 2224.6000                                           |        |        |             |        |      |
|            |                                          |                 | 224.60 - 2636.40 2224.6000 - 2636.4000<br>536.40 - 3048.20 2636.4000 - 3048.2000 |        |        |             |        |      |
| -8         | Attributes Form                          | v ● 30          | 048.20 - 3460.00 3048.2000 - 3460.0000                                           |        |        |             |        |      |
| • ◀        | Joins                                    | 111             |                                                                                  |        |        |             |        |      |
| s'         | Auxiliary Storage                        |                 |                                                                                  |        |        |             |        |      |
| ్రం        | Actions                                  |                 |                                                                                  |        |        |             |        |      |
| <b>-</b>   | Display                                  |                 |                                                                                  |        |        |             |        |      |
| *          | Rendering                                |                 |                                                                                  |        |        |             |        |      |
| 3          | Variables                                |                 |                                                                                  |        |        |             |        |      |
| 2          | Metadata                                 | Mode Equal In   | terval 👻                                                                         |        |        | Cla         | sses 5 | ;    |
| 2          | Dependencies                             | Classify        | ा Delete all                                                                     |        |        |             | Advanc | ed 👻 |
|            | Legend                                   | ✓ Link class bo | undaries                                                                         |        |        |             |        |      |
|            | OGIS Server                              | Layer ren       | lering                                                                           |        |        |             |        |      |
|            |                                          | Style -         | ]                                                                                | ОК     | Cancel | Apply       | Help   | P    |

After these steps you can easily create your own maps and include north arrows, legends and scale bars by going to *Project>New Print Layout* 

# 2.9 Online interfaces & Applications

For those who would like to just take a taste of an OnSSET electrification analysis, KTH dESA has collaborated international organizations in order to develop interactive platforms that allow a quick display of "pre-cooked" electrification results for a number of countries.

## 2.9.1 United Nations app

The online interface Universal Electrification Access is part of the modelling tools for sustainable development and is based on OnSSET. This interface is not a model but it provides the user easy access to the methodology behind OnSSET, the datasets used and key results -with regards to electrification planning - obtained for a set of 30 scenarios and model runs for 54 developing countries in Sub-Saharan Africa and Latin America.



## 2.9.2 World Bank app

A Web-based application developed by the World Bank, Energy Sector Management Assistance Program (ESMAP) and KTH Royal Institute of Technology in Stockholm, shows the dynamic of an OnSSET based electrification analysis. The tool considers a variety of open, geospatial data to determine the least-cost options for bringing electricity to areas as granular as 1 square km in size. So far three countries are included – Tanzania, Zambia, and Nigeria – and will be adapted for more.



# 2.10 References

Since its development, OnSSET has been employed for a high number of studies presented at international conferences and published on peer reviewed journals. Here you find a list of the publications on OnSSET, which is going to be continuously updated.

## 2.10.1 Publications

The Role of Open Access Data in Geospatial Electrification Planning and the Achievement of SDG7. An OnSSET-Based Case Study for Malawi

A GIS-based approach for electrification planning-A case study on Nigeria

The benefits of geospatial planning in energy access – A case study on Ethiopia

A cost comparison of technology approaches for improving access to electricity services

A climate, land-use, energy and water nexus assessment of Bolivia

UN Sustainable development goals from a Climate Land Energy and Water perspective for Kenya

Lighting up the World at NASA-ESA International Workshop on Environment and Alternative Energy

Open Geospatial Data for Energy Access

Sustainable Development Goals: The EU at the global partnership forefront

Taming a Wicked Problem: Energy Access Planning from an Energy-Poor Perspective

Lighting up the World at European Geosciences Union General Assembly (to be updated)

## 2.10.2 Contribution

#### nergy specialists

In the policymaking arena, electrification planning is often captured by private consultants' analytical infrastructure. The open source nature and the modular structure of the developed tool allow users to build and modify the code according to their requirements and sources and to develop rapid cost effective electrification plans with minimal resource and computational requirements as compared to existing electrification planning tools that are time-, data- and resource- intensive.

## Education

OnSSET can be used by graduate students to enhance its functionalities and develop new applications in order to help address energy access issues. Enabling graduate students to build and iteratively develop formal energy planning models will impart this knowledge base to very wide range of energy market roles and positions.

## Community

OnSSET community welcomes professionals and experts from different levels: decision makers, policy officers, energy planners, developers of new model functionalities, programmers. All your valuable comments and contributions are welcomed here.

## 2.10.3 Partners















## Vetenskapsrådet



# 2.11 Contact

Ask any questions on OnSSET forum.

You will need just a few clicks to sign up to the forum. Find the link at the top-right corner of the Optimus.community page.

## **Contact us:**

E-mail: media@desa.kth.se (tbu) or meet the team here.



## 2.11.1 Feedback

Please post all comments and feedback you may have regarding this manual here..

## 2.11.2 Funding

OnSSET is a non-profit project. We rely on external funding and welcome partnerships. In this regard please contact us at seap@desa.kth.se.

## 2.11.3 Administration

# dES KTH Postal Address: KTH - School of Industrial Engineering and Management division of Energy Systems Brinellvägen 68 SE-100 44 STOCKHOLM https://www.desa.kth.se

| img/Kth_logo2 | . png |
|---------------|-------|
|---------------|-------|

# 2.12 FAQ

#### [Q] What prior knowledge is required for someone to use OnSSET?

[A] One should be familiar with the basic principles of energy planning and energy economics. Experience in working with Geographic Information Systems is also essential in order to build, analyse and visualize spatial datasets. Python skills are necessary if one would like to modify the code.

# [Q] What type of renewable sources are used in an OnSSET model? Is it possible to add other sources (biomass etc.)?

[A] Currently, solar photovoltaics, wind turbines and mini and small hydropower plants are considered as off grid renewable energy technologies. The inclusion of bioenergy and hybrid technologies constitutes an ongoing addition.

#### [Q] How long does it take to complete an OnSSET electrification analysis for one country?

[A] This depends on the size of the country, on the resolution of the analysis, on the country specific characteristics of the grid infrastructure and on the electricity consumption level scenarios. Indicatively, to run Nigeria (area: 923,768 km<sup>2</sup>), at 1 km resolution and the highest electricity consumption it takes ca. 4.5 hours (assuming that the necessary GIS layers are developed beforehand).

# 2.13 License

#### MIT License

Copyright (c) 2020 Andreas Sahlberg, Alexandros Korkovelos, Babak Khavari, Oluchi Monwe, Dimitrios Mentis, Christopher Arderne

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

## 2.14 onsset

## 2.14.1 onsset package

Submodules

onsset.gui\_runner module

#### onsset.onsset module

#### class onsset.onsset.SettlementProcessor(path)

Bases: object

Processes the DataFrame and adds all the columns to determine the cheapest option and the final costs and summaries

**apply\_limitations**(*eleclimit*, *year*, *time\_step*, *prioritization*, *auto\_densification=0*)

calc\_summaries(df\_summary, sumtechs, tech\_codes, year)

The next section calculates the summaries for technology split, capacity added and total investment cost

static calc\_wind\_cfs(wind\_vel)

calculate\_investments\_and\_capacity(sa\_diesel\_investment, sa\_diesel\_capacity, sa\_pv\_investment, sa\_pv\_capacity, mg\_diesel\_investment, mg\_diesel\_capacity, mg\_pv\_investment, mg\_pv\_capacity, mg\_wind\_investment, mg\_wind\_capacity, mg\_hydro\_investment, mg\_hydro\_capacity, grid\_investment, grid\_capacity, year)

#### calculate\_new\_connections(year, time\_step, start\_year)

this method defines new connections for grid related purposes

#### Parameters

- year (int) -
- time\_step (int) -
- start\_year (int) -

Calculate the LCOEs for all off-grid technologies

#### calculate\_total\_demand\_per\_settlement(year)

this method calculates total demand for each settlement per year

#### Parameters year (int) -

#### calibrate\_current\_pop\_and\_urban(pop\_actual, urban\_current)

The function calibrates population values and urban/rural split (as estimated from GIS layers) based on actual values provided by the user for the start year.

max\_hv\_dist=5, buffer=True)

Calibrate the current electrification status

choose\_minimum\_off\_grid\_tech(year, mg\_hydro\_calc, techs, tech\_codes)

Choose minimum LCOE off-grid technology

First step determines the off-grid technology with minimum LCOE Second step determines the value (number) of the selected minimum off-grid technology

#### Parameters

- year (int) -
- mg\_hydro\_calc(dict) -

#### static classify\_elevation(elevation)

Classify the elevation distance according to bins and labels

#### Parameters elevation (list) –

#### static classify\_land\_cover(column)

this is a different method employed to classify land cover and create new columns with the classification

Parameters column (series) –

#### Notes

0, 11 = 1 6, 8 = 2 1, 3, 5, 12, 13, 15 = 3 2, 4 = 4 7, 9, 10, 14, 16 = 5

#### static classify\_road\_distance(road\_distance)

Classify the road distance according to bins and labels

#### **Parameters**

road\_distance (list) -

#### static classify\_slope(slope)

Classify the slope according to bins and labels

Parameters slope (list) -

#### static classify\_substation\_distance(substation\_distance)

Classify the substation distance according to bins and labels

Parameters substation\_distance (list) -

compute\_diesel\_cost(dataframe: DataFrame, sa\_diesel\_cost: Dict, mg\_diesel\_cost: Dict, year: int)
Calculate diesel fuel cost

#### **Parameters**

- dataframe (pandas.DataFrame) –
- sa\_diesel\_cost (Dict) -
- mg\_diesel\_cost (Dict) –
- **year** (*int*) –

Return type pandas.DataFrame

#### condition\_df()

Do any initial data conditioning that may be required.

## current\_mv\_line\_dist()

**diesel\_cost\_columns**(*sa\_diesel\_cost: Dict[str, float], mg\_diesel\_cost: Dict[str, float], year: int*) Calculate diesel fuel cost based on TravelHours column

**Parameters** 

- sa\_diesel\_cost (Dict) -
- mg\_diesel\_cost (Dict) -
- year (int) -

```
static do_kdtree(combined_x_y_arrays, points)
```

Iterate through all electrified settlements and find which settlements can be economically connected to the grid Repeat with newly electrified settlements until no more are added

get\_grid\_lcoe(dist\_adjusted, elecorder, additional\_transformer, year, time\_step, end\_year, grid\_calc)

#### grid\_penalties(data\_frame)

this method calculates the grid penalties in each settlement

First step classifies the parameters and creates new columns with classification

Second step adds the grid penalty to increase grid cost in areas that higher road distance, higher substation distance, unsuitable land cover, high slope angle or high elevation

#### static haversine\_vector(lon1, lat1, lon2, lat2)

Calculate the great circle distance between two points on the earth (specified in decimal degrees)

```
limit_hydro_usage(mg_hydro_calc, year)
```

## "…

Prepares the five Residential Demand Tier Targets based customized for each country

project\_pop\_and\_urban(pop\_future, urban\_future, start\_year, years\_of\_analysis)

This function projects population and urban/rural ratio for the different years of the analysis

**results\_columns**(techs, tech\_codes, year, time\_step, prio, auto\_intensification)

Calculate the capacity and investment requirements for each settlement

Once the grid extension algorithm has been run, determine the minimum overall option, and calculate the capacity and investment requirements for each settlement

#### Parameters year (int) -

this method defines residential demand per tier level for each target year

#### Parameters

- rural\_tier (int) -
- urban\_tier (int) -
- num\_people\_per\_hh\_rural (float) -
- num\_people\_per\_hh\_urban (float) -
- productive\_demand (int) -

this method determines some basic parameters required in LCOE calculation it sets the basic scenario parameters that differ based on urban/rural so that they are in the table and can be read directly to calculate LCOEs

#### **Parameters**

- **year** (*int*) -
- num\_people\_per\_hh\_rural (float) -
- num\_people\_per\_hh\_urban (float) -
- time\_step (int) -
- start\_year (int) -
- urban\_tier (int) -
- rural\_tier (int) -
- end\_year\_pop (int) -
- productive\_demand (int) -

Bases: object

Used to define the parameters for each electricity access technology, and to calculate the LCOE depending on input parameters.

**distribution\_network**(*people*, *energy\_per\_cell*, *num\_people\_per\_hh*, *grid\_cell\_area*, *productive\_nodes=0*)

This method calculates the required components for the distribution network This includes potentially MV lines, LV lines and service transformers

#### Parameters

- **people** (*float*) Number of people in settlement
- energy\_per\_cell (float) Annual energy demand in settlement (kWh)
- num\_people\_per\_hh (float) Number of people per household in settlement
- grid\_cell\_area (float) Area of settlement (km2)
- productive\_nodes (int) Additional connections (schools, health facilities, shops)

#### Notes

Based on: https://www.mdpi.com/1996-1073/12/7/1395

Calculates the LCOE depending on the parameters.

Parameters

- people (float or pandas. Series) Number of people in settlement
- **new\_connections** (*float or pandas.Series*) Number of new people in settlement to connect
- **prev\_code** (*int or pandas.Series*) Code representation of previous supply technology in settlement
- total\_energy\_per\_cell (float or pandas.Series) Total annual energy demand in cell, including already met demand
- **energy\_per\_cell** (*float or pandas.Series*) Annual energy demand in cell, excluding already met demand
- num\_people\_per\_hh (float or pandas.Series) Number of people per household in settlement
- grid\_cell\_area (float or pandas.Series) Area of settlement (km2)
- additional\_mv\_line\_length (float or pandas.Series) Distance to connect the settlement
- **additional\_transformer** (*int*) If a transformer is needed on other end to connect to HV line
- **productive\_nodes** (*int or pandas.Series*) Additional connections (schools, health facilities, shops)
- elec\_loop (int or pandas. Series) Round of extension in grid extension algorithm
- **penalty** (*float or pandas.Series*) Cost penalty factor for T&D network, e.g. https: //www.mdpi.com/2071-1050/12/3/777
- start\_year (int) -
- end\_year (int) –
- capacity\_factor (float or pandas.Series) -
- grid\_penalty\_ratio(float or pandas.Series) -
- fuel\_cost (float or pandas.Series) -

#### Return type

lcoe or discounted investment cost

 $\verb"classmethod" set_default_values(base_year, start_year, end_year, discount_rate, hv_line_type=69, the start_year, discount_$ 

hv\_line\_cost=53000, mv\_line\_type=33, mv\_line\_amperage\_limit=8.0, mv\_line\_cost=7000, lv\_line\_type=0.24, lv\_line\_cost=4250, lv\_line\_max\_length=0.5, service\_transf\_type=50, service\_transf\_cost=4250, max\_nodes\_per\_serv\_trans=300, mv\_lv\_sub\_station\_type=400, mv\_lv\_sub\_station\_cost=10000, mv\_mv\_sub\_station\_cost=10000, hv\_lv\_sub\_station\_type=1000, hv\_lv\_sub\_station\_cost=25000, hv\_mv\_sub\_station\_cost=25000, power\_factor=0.9, load\_moment=9643)

Initialises the class with parameter values common to all Technologies

Calculates all the transmission and distribution network components

**Parameters** 

- **people** (*float*) Number of people in settlement
- new\_connections (float) Number of new people in settlement to connect
- prev\_code (int) Code representation of previous supply technology in settlement
- **total\_energy\_per\_cell** (*float*) Total annual energy demand in cell, including already met demand
- energy\_per\_cell (float) Annual energy demand in cell, excluding already met demand
- num\_people\_per\_hh (float) Number of people per household in settlement
- grid\_cell\_area (float) Area of settlement (km2)
- additional\_mv\_line\_length (float) Distance to connect the settlement
- **additional\_transformer** (*int*) If a transformer is needed on other end to connect to HV line
- productive\_nodes (*int*) Additional connections (schools, health facilities, shops)
- elec\_loop (int) Round of extension in grid extension algorithm
- penalty (float) Cost penalty factor for T&D network, e.g. https://www.mdpi.com/ 2071-1050/12/3/777

#### **transmission\_network**(*peak\_load*, *additional\_mv\_line\_length=0*, *additional\_transformer=0*, *mv\_distribution=False*)

This method calculates the required components for connecting the settlement Settlements can be connected to grid or a hydropower source This includes potentially HV lines, MV lines and substations

#### Parameters

- **peak\_load** (*float*) Peak load in the settlement (kW)
- additional\_mv\_line\_length (float) Distance to connect the settlement
- **additional\_transformer** (*int*) If a transformer is needed on other end to connect to HV line
- mv\_distribution (bool) True if distribution network in settlement contains MV lines

#### Notes

Based on: https://www.mdpi.com/1996-1073/12/7/1395

#### onsset.runner module

onsset.runner.calibration(specs\_path, csv\_path, specs\_path\_calib, calibrated\_csv\_path)

#### Parameters

- specs\_path -
- csv\_path -
- specs\_path\_calib -
- calibrated\_csv\_path -

onsset.runner.scenario(specs\_path, calibrated\_csv\_path, results\_folder, summary\_folder)

## Parameters

- specs\_path (str) -
- calibrated\_csv\_path(str)-
- results\_folder (str) -
- summary\_folder (str) -

#### onsset.specs module

Columns in the specs file must match these exactly

## **Module contents**

The onsset package contains the following modules:

- onsset.py : main functions of the model
- runner.py : runner is used to calibrate inputs and specify scenario runs

## CHAPTER

# THREE

# **INDICES AND TABLES**

- genindex
- modindex
- search

# **PYTHON MODULE INDEX**

## 0

onsset,58 onsset.onsset,51 onsset.runner,57 onsset.specs,58

## INDEX

## А

| apply  | _limitations()                 | (ons    |
|--------|--------------------------------|---------|
|        | set.onsset.SettlementProcessor | method) |
|        | 51                             |         |
| $\sim$ |                                |         |

## С

| calc_summaries() (onsset.onsset.Settlement.            | Processor          |
|--------------------------------------------------------|--------------------|
| method), 51                                            |                    |
| calc_wind_cfs() (onsset.onsset.Settlement)             | Processor          |
| <i>static method</i> ), 51                             |                    |
| <pre>calculate_investments_and_capacity()</pre>        | (ons-              |
| set.onsset.SettlementProcessor method                  | <i>d</i> ), 51     |
| calculate_new_connections()                            | (ons-              |
| set.onsset.SettlementProcessor                         | method),           |
| 52                                                     |                    |
| calculate_off_grid_lcoes()                             | (ons-              |
| set.onsset.SettlementProcessor                         | method),           |
| 52                                                     |                    |
| calculate_total_demand_per_settlement                  | t() ( <i>ons</i> - |
| set.onsset.SettlementProcessor method                  | <i>d</i> ), 52     |
| calibrate_current_pop_and_urban()                      | (ons-              |
| set.onsset.SettlementProcessor                         | method),           |
| 52                                                     |                    |
| calibrate_elec_current()                               | (ons-              |
| set.onsset.SettlementProcessor                         | method),           |
| 52                                                     |                    |
| <pre>calibration() (in module onsset.runner), 57</pre> |                    |
| <pre>choose_minimum_off_grid_tech()</pre>              | (ons-              |
| set.onsset.SettlementProcessor                         | method),           |
| 52                                                     |                    |
| <pre>classify_elevation()</pre>                        | (ons-              |
| set.onsset.SettlementProcessor static                  | method),           |
| 52                                                     |                    |
| <pre>classify_land_cover()</pre>                       | (ons-              |
| set.onsset.SettlementProcessor static                  | method),           |
| 52                                                     |                    |
| <pre>classify_road_distance()</pre>                    | (ons-              |
| set.onsset.SettlementProcessor static                  | method),           |
| 53                                                     |                    |
| <pre>classify_slope() (onsset.onsset.Settlement.</pre> | Processor          |
| static method), 53                                     |                    |
| <pre>classify_substation_distance()</pre>              | (ons-              |

set.onsset.SettlementProcessor static method), 53

- closest\_electrified\_settlement() (onsset.onsset.SettlementProcessor method), 53
- compute\_diesel\_cost() (onsset.onsset.SettlementProcessor method), 53
- current\_mv\_line\_dist() (onsset.onsset.SettlementProcessor method), 53

## D

- diesel\_cost\_columns() (onsset.onsset.SettlementProcessor method), 53

## Е

# G

- grid\_penalties() (onsset.onsset.SettlementProcessor method), 54

## Η

L

- haversine\_vector() (onsset.onsset.SettlementProcessor static method), 54
- limit\_hydro\_usage() (onsset.onsset.SettlementProcessor method), 54

## Μ

```
module
    onsset, 58
    onsset.onsset, 51
    onsset.runner, 57
    onsset.specs, 58
```

# 0

```
onsset
module, 58
onsset.onsset
module, 51
onsset.runner
module, 57
onsset.specs
module, 58
```

# Ρ

| pre_electrification            | 0              | (ons-            |
|--------------------------------|----------------|------------------|
| set.onsset.Settle              | ementProcessor | <i>method</i> ), |
| 54                             |                |                  |
| <pre>prepare_wtf_tier_co</pre> | lumns()        | (ons-            |
| set.onsset.Settle              | ementProcessor | <i>method</i> ), |
| 54                             |                |                  |
| <pre>project_pop_and_urb</pre> | an()           | (ons-            |
| set.onsset.Settle              | ementProcessor | <i>method</i> ), |
| 54                             |                |                  |

# R

| results_columns()              | (ons-            |
|--------------------------------|------------------|
| set.onsset.SettlementProcessor | <i>method</i> ), |
| 54                             |                  |

# S

# Т

td\_network\_cost() (onsset.onsset.Technology method), 56 Technology (class in onsset.onsset), 55 transmission\_network() (onsset.onsset.Technology method), 57

# U

update\_grid\_extension\_info() (onsset.onsset.SettlementProcessor method), 55